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What are the minimal resources
needed to reproduce a target
quantum process?

Finding the minimal resources allows us to reduce the model’s description.



Why is quantum model reduction interesting?

Efficient quantum simulation (on classical and quantum computers);

Efficient implementations of:
o controllers,
o error suppression schemes,
o quantum filters;

Easier models to study;

® Proving optimality of quantum algorithms;

Probing “quantumness” of processes;

Efficient generation of quantum trajectories (Monte Carlo methods).



Dynamics of interest: Conditional dynamics

® CPTP evolution followed by generalized measurement;
® |Imperfect measurement;

® Dynamics conditioned on the measurement outcome.

In general we assume to have a set of CP { M }rca, St > 1cq ML(l) — 1l
with Q) the set of possible outcomes.

If the state of the system is p, the outcome k € Q) is observed with probability
P, [M = k] = tx[My(p)].
The state of the system, conditioned on the measurement outcome, then is

plm=k = _Milo)
— tr[M(p)]



Linear dynamics

The conditioning rule p|y—r = tr/[\/fjlf'(”;)] is non-linear.

But we can consider un-normalized states  so that the dynamics becomes

ﬁ(t + 1) - Mkt+1 [ﬁ(tﬂ c

The probability of a sequence of outcomes then is:
IP)[-/\/10:15 = kO:t] = tr[Mko:t (PO)} = tr[Mk’t ©---0 Mk:1 o Mk?o (:00)]

To compute the normalized state or expectation values one can simply re-normalize:

O = gty (0(0) = ul0p()] =



Quantities of interest:

In many practical settings, one is not interested in the entire state p.

We thus assume to only be interest in reproducing the expectation value of a set of
observables of interest {O,} that include the identity, 1 € {O;}.

We can compactly represent these as a linear output map C : B(H) — #:
Clp] = 3, E;tr[O;p).

In the following we focus in the conditional dynamics (CD) ({ M},C):

{ﬁ(Hl) = My, [5(t)]
Y(t)  =cla)]

Similar to Hidden Markov Models.



Measure o,

Monitored spin chain @ 1=
p
1

- A toy model - 2 N

Do nothing
N-1
E()y=e . where H=5» oWl
Jj=1

We assume to perform a projective on the last spin with probability p € (0, 1).
K-i(-)=p1-1, Ko(-) = (1 = p)Ip - Lo, Ki(-) = (1 —p)Iy - 11y

where TIy, I1; are the eigenprojectors of agN).

Mk = ICk o0&
We are actually interested in reproducing the evolution of the first spin, i.e.

p1(t) = tri[p(t)] C() = tr1()



The problem: Quantum model reduction

Given a CD ({M},0C) find:

e another CD ({M,.},C);

® alinear map ® : C"*™ — C"*" so that py = P|[po]
such that

C[Mq,, (p0)] = C[Muq, (p0)]

forallt > 0 all po € ©(H), and for all sequences of outcomes k..



Observable space

Let us define
0 = Span{Oj, MLM(OJ‘)? V], VkO:ta Vt}

the (Krylov) operator space that contains the observables of interest evolved in
Heisenberg picture, for all possible trajectories.

One can see it as the orthogonal to the “usual” non-observable subspace ./".
0 is the smallest M -invariant operator space that contains {O;}.

0 contains all the degrees of freedom we need to reproduce C[My,., (po)]-



Problem:
Restricting the model onto & does
not ensure Complete Positivity

How do we ensure that physical (probability) constraints are satisfied?



The solution: x-algebras

We define a x-algebra 7 as an operator space closed under matrix multiplication and
adjoint action.

XYeod = X+Yeog X' Yiesds and XY e

It is the fundamental mathematical structure that supports a
quantum probability space.



Conditional expectations

A conditional expectation E,, ,[-] is a CP unital proj. onto a x-algebra ./
(and such that tr[p E, ,[X]] = tr[pX] for all X € B(H)).

When 1 € &7, E,, 1 ,,[] exists and is an orthogonal proj. hence CPTP.

E. 1/n[] can be factorized in two non-square CPTP isometries

Ey1/ml]=JR.

Given a CPTP map A, its reduction onto the algebra <7,

Al = RAT \
is CPTP. J




Observable CPTP reduction

We leverage the knowledge of the quantities of interest to reduce the model:
1. Find the observable subspace &'
2. Close its orthogonal complement to a *-algebra <7 = alg(0);
3. Compute the cond. exp. E, ;/,[-] and its CPTP factors R and 7;

4. Use the two factors to reduce the dynamics:
M = RMLT, C=CJ, o =R.

Note that M, are CP and also 3", ., M}(1) = 1 as Rf, 7T are unital.



Reduction of Measurements and Dynamics

In many cases we have M;, = K o £ with £ a CPTP dynamics and
Ki() = M, - M,I a generalized measurement, >, M,IMk =1.

Assuming one of the following:
1. H st Y My =6&;
2. N+ is Et-invariant;
3. & is Ki-invariant Vk;
4. o is Ef-invariant;

We have o
My, = RMLT = RKRT RET = Kié



Measure o,

Monitored spin chain @ 1=
p
1

- A toy model - 2 N

Do nothing
N
E()y=eH . where H= 52 oW gl
j=1

We assume to perform a projective on the last spin with probability p € (0, 1).
K-i(-)=p1-1, Ko(-) = (1 = p)Ip - Ly, Ki(-) = (1 —p)Iy - 11y

where TIy, I1; are the eigenprojectors of agN).

Mk = ICk o0&
We are actually interested in reproducing the evolution of the first spin, i.e.

p1(t) = tri[p(t)] C() = tr()



Monitored spin chain - Spaces

For N > 4, regardeless of N we have dim(&) = 18.
The evolution of p;(t) is only influences by spins 1,2, N — 1, N.

Moreover,
JZ{ ~ (C4><4 @ (C4><4.

and is KCp-invariant.

The reduced model is thus a classical mixture of two two-qubit systems and M, = K,.£€.

£(t) = [ Soét) £1O(t) ] € C&®



Take home ideas

1. We need algebras to define a quantum probability space;

2. Conditional expectations provide CPTP reduction.
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* Framework for model reduction of statistical dynamics (CPTP) %
® Applied to discrete-time quantum trajectories [arXiv:2403.12575]; ARTMOUTH
® The framework is very general and has been applied to:
o (deterministic) Discrete-time case [arXiv:2307.06319];
o (deterministic) Continuous-time case (joint with LV) [arXiv:2412.05102];
o Continuous-time quantum trajectories (in preparation).
¢ Outlook o0 0 ot
o Approximate model reduction; @ it 0ot ;@
o Connection with adiabatic elimination techniques; $2egecounsas Podsiriring
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