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What are the minimal resources
needed to reproduce a target
quantum process?

Finding the minimal resources allows us to reduce the model’s description.



Why is quantum model reduction interesting?

• Efficient quantum simulation (on classical and quantum computers);

• Efficient implementations of:
◦ controllers,
◦ error suppression schemes,
◦ quantum filters;

• Easier models to study;

• Proving optimality of quantum algorithms;

• Probing “quantumness” of processes;

• Efficient generation of quantum trajectories (Monte Carlo methods).



Dynamics of interest: Conditional dynamics
• CPTP evolution followed by generalized measurement;

• Imperfect measurement;

• Dynamics conditioned on the measurement outcome.

In general we assume to have a set of CP {Mk}k∈Ω, s.t
∑

k∈ΩM†
k(1) = 1

with Ω the set of possible outcomes.

If the state of the system is ρ, the outcome k ∈ Ω is observed with probability

Pρ[M = k] = tr[Mk(ρ)].

The state of the system, conditioned on the measurement outcome, then is

ρ|M=k =
Mk(ρ)

tr[Mk(ρ)]
.



Linear dynamics

The conditioning rule ρ|M=k = Mk(ρ)
tr[Mk(ρ)]

is non-linear.

But we can consider un-normalized states ρ̃ so that the dynamics becomes

ρ̃(t+ 1) = Mkt+1 [ρ̃(t)] .

The probability of a sequence of outcomes then is:

P[M0:t = k0:t] = tr[Mk0:t(ρ0)] = tr[Mkt ◦ · · · ◦Mk1 ◦Mk0(ρ0)]

To compute the normalized state or expectation values one can simply re-normalize:

ρ(t) =
ρ̃(t)

P[M0:t = k0:t]
⟨O(t)⟩ = tr[Oρ(t)] =

tr[Oρ̃(t)]

P[M0:t = k0:t]



Quantities of interest:

In many practical settings, one is not interested in the entire state ρ.

We thus assume to only be interest in reproducing the expectation value of a set of
observables of interest {Oj} that include the identity, 1 ∈ {Oj}.

We can compactly represent these as a linear output map C : B(H) → Y :
C[ρ] = ∑

j Ejtr[Ojρ].

In the following we focus in the conditional dynamics (CD) ({Mk}, C):{
ρ̃(t+ 1) = Mkt+1 [ρ̃(t)]

Y (t) = C[ρ̃(t)]

Similar to Hidden Markov Models.



Monitored spin chain
- A toy model -

E(·) = e−iH · eiH where H = δ

N−1∑
j=1

σ(j)
x σ(j+1)

x

We assume to perform a projective on the last spin with probability p ∈ (0, 1).

K−1(·) = p1 · 1, K0(·) = (1− p)Π0 ·Π0, K1(·) = (1− p)Π1 ·Π1

where Π0,Π1 are the eigenprojectors of σ(N)
z .

Mk = Kk ◦ E
We are actually interested in reproducing the evolution of the first spin, i.e.

ρ1(t) = tr1̄[ρ(t)] C(·) = tr1̄(·)

1 2

. . .

N
p

1− p

Measure σz

Do nothing



The problem: Quantum model reduction

Given a CD ({Mk}, C) find:
• another CD ({M̌k}, Č);
• a linear map Φ : Cn×n → Cr×r so that ρ̌0 = Φ[ρ0]

such that

C[Mk0:t(ρ0)] = Č[M̌k0:t(ρ̌0)]

for all t ≥ 0 all ρ0 ∈ D(H), and for all sequences of outcomes k0:t.



Observable space

Let us define
O = span{Oj ,M†

k0:t
(Oj), ∀j, ∀k0:t, ∀t}

the (Krylov) operator space that contains the observables of interest evolved in
Heisenberg picture, for all possible trajectories.

One can see it as the orthogonal to the “usual” non-observable subspace N .

FACT: O is the smallest M†
k-invariant operator space that contains {Oj}.

O contains all the degrees of freedom we need to reproduce C[Mk0:t(ρ0)].



Problem:
Restricting the model onto O does
not ensure Complete Positivity

How do we ensure that physical (probability) constraints are satisfied?



The solution: ∗-algebras

We define a ∗-algebra A as an operator space closed under matrix multiplication and
adjoint action.

X,Y ∈ A ⇒ X + Y ∈ A X†, Y † ∈ A and XY ∈ A

It is the fundamental mathematical structure that supports a
quantum probability space.



Conditional expectations
A conditional expectation EA ,ρ[·] is a CP unital proj. onto a ∗-algebra A
(and such that tr[ρEA ,ρ[X]] = tr[ρX] for all X ∈ B(H)).

When 1 ∈ A , EA ,1/n[·] exists and is an orthogonal proj. hence CPTP.

EA ,1/n[·] can be factorized in two non-square CPTP isometries

EA ,1/n[·] = JR.

Given a CPTP map A, its reduction onto the algebra A ,

A|A = RAJ

is CPTP.
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Observable CPTP reduction

We leverage the knowledge of the quantities of interest to reduce the model:

1. Find the observable subspace O.

2. Close its orthogonal complement to a *-algebra A = alg(O);

3. Compute the cond. exp. EA ,1/n[·] and its CPTP factors R and J ;

4. Use the two factors to reduce the dynamics:

M̌k = RMkJ , Č = CJ , Φ = R.

Note that M̌k are CP and also
∑

k∈Ω M̌†
k(1) = 1 as R†,J † are unital.



Reduction of Measurements and Dynamics

In many cases we have Mk = Kk ◦ E with E a CPTP dynamics and
Kk(·) = Mk ·M †

k a generalized measurement,
∑

k∈ΩM †
kMk = 1.

Assuming one of the following:
1. ∃{λk} s.t.

∑
k Mk = E ;

2. N ⊥ is E†-invariant;
3. A is Kk-invariant ∀k;
4. A is E†-invariant;

We have
M̌k = RMkJ = RKkJ REJ = ǨkĚ



Monitored spin chain
- A toy model -

E(·) = e−iH · eiH where H = δ

N∑
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σ(j)
x σ(j)

x
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where Π0,Π1 are the eigenprojectors of σ(N)
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ρ1(t) = tr1̄[ρ(t)] C(·) = tr1̄(·)
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Monitored spin chain - Spaces

For N ≥ 4, regardeless of N we have dim(O) = 18.
The evolution of ρ1(t) is only influences by spins 1, 2, N − 1, N .

Moreover,
A ≃ C4×4 ⊕ C4×4.

and is Kk-invariant.

The reduced model is thus a classical mixture of two two-qubit systems and M̌k = ǨkĚ .

ξ(t) =

[
ξ0(t) 0

0 ξ1(t)

]
∈ C8×8



Take home ideas

1. We need algebras to define a quantum probability space;

2. Conditional expectations provide CPTP reduction.



Conclusion

• Framework for model reduction of statistical dynamics (CPTP)

• Applied to discrete-time quantum trajectories [arXiv:2403.12575];
• The framework is very general and has been applied to:

◦ (deterministic) Discrete-time case [arXiv:2307.06319];
◦ (deterministic) Continuous-time case NEW! (joint with LV) [arXiv:2412.05102];
◦ Continuous-time quantum trajectories (in preparation).

• Outlook
◦ Approximate model reduction;
◦ Connection with adiabatic elimination techniques;

Our group’s website →

Thanks for your attention!


