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Agenda

e Classical Conditional Expectations (CE) - a brief review:
o Definitions,
o Properties,
o Their use - Maximum likelihood estimator;

® Quantum CEs:
o Definition,
o Properties (Tomita-Takesaki Theorem),
o Their use:
® Convergence to common fixed points by alternating projections;
B Bayesian parameter estimation (maybe next time);
B Model reduction (next time).

We here consider ONLY discrete random variables.



Classical CEs



Motivating example - dice games

Imagine tossing two fair dice and take the sum of their outcomes.

Let X, Y be the random variable associated to each die toss, i.e. the alphabet

X =Y=1{1,2,3,4,5,6}, and each outcome has probability 1/6.
The sum, is a random variable Z = X + Y distributed according to

z |2 3 4 5 6 7 8 9 10 11 12
3
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We would like to know:

1. What is the expected (weighted average) value of the sum (Z) assuming that one

die came outas a6 (e.g. y = 6)?
2. How can we represent this information for any value of one die (Y)?

3. Assume that, to win this turn of the dice game, you need to score at leasta 7
(included) and depending on the actual sum you score points. What is the

expected value of the sum above and below this threshold?



Different notions of conditional expectations

When studying (classical) probability theory, one encounters different definitions
associated to the notion of “conditional expectations”.

These definitions are often categorized as:
e CE (value) given an event;
® CE given a random variable;
® CE given a s-algebra.

We shall see that these are actually a renaming of the same object.



CE (value) given an event - Definition

Let (Q2, F, P) be a probability space and let X be a F-measurable random variable
taking values in the alphabet X and let E be an event F € F.

Definition 1
The conditional expectation (value) of X given that the event F € F was observed,
E[X|E], is defined as the value:

E[X|E] = ) zP[X =z|E].
reX

Intuition: usual definition of expected value with the use of the probability conditioned
on the event E.



Observation on the naming

According to this definition, E[X | E] is just a scalar value.

However, to keep agreement with the definitions that follow we can extend this
definition to obtain a random variable by simply multiplying the conditional
expectation value by the indicator function associated to the event.

That is, E[X|E]1g(w) is now an F-measurable random variable.



Case with two random variables

Let X and Y be random variables defined over the same probability space (2, F, P)
taking values in the alphabets X', ).

Events of interest in this case include when one of the two random variables assume
avalue, e.g. Y = y. In that case, The conditional expectation (value) of X given that
Y has taken value y € ) is

EX|Y =vy| = ZxP =z|Y =yl
TeX

Note that, we have constructed a function ¢(-) that, given an outcome y € ) returns
the conditional expectation (value) g(y) = E[X|Y = y].



CE given a random variable - Definition

Let X and Y be random variables defined over the same probability space (2, F, P)
taking values in the alphabets X', ).

Definition 2
The conditional expectation of X given Y is then the random variable ¢(Y) which

takes the value E[X|Y = y| with probability py (v), i.e.

ElX|Y] =) (Z zP[X = z|Y = y]> Ty—y(w)

yeY \zeX

E[X|Y=y]

where 1y_,(w) is the indicator function of the event Y = y.



CE given a o-algebra - Definition

Let (€2, F,P) be a probability space and let X be a F-measurable random variable
taking values in the alphabet X'. Let G be a sub-c-algebra of F and let atom(G) be
the set of atomic events of G.

Note: Here we need to assume that G is generated by a finite set of events, atom(G).

Definition 3
The conditional expectation of X given a o-algebra G, E[X|G], is defined as the G-
measurable random variable:

E[X|Gl= > E[X|Ellg(w).

Eecatom(G)



Note on the equivalence of the three definitions

CE given an event (r.v.s not values) are simply CE given the o-algebra
G ={0,E,E,Q}.

CE given a random variable Y are simply CE given the smallest o-algebra that makes
the r.v. Y measurable, i.e. G = c({Y = y},ey) and atom(G) = {Y = y}yey.

The three different naming we saw do not refer to different notions of conditional
expectations rather to different ways of specifying a o-algebra.



Motivating example - dice games

Imagine tossing two fair dice and take the sum of their outcomes.

Let X, Y be the random variable associated to each die toss, i.e. the alphabet

X =Y=1{1,2,3,4,5,6}, and each outcome has probability 1/6.
The sum, is a random variable Z = X + Y distributed according to

z |2 3 4 5 6 7 8 9 10 11 12
3
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We would like to know:

1. What is the expected (weighted average) value of the sum (Z) assuming that one

die came outas a6 (y = 6)?
2. How can we represent this information for any value of the die (Y)?

3. Assume that, to win this turn of the dice game, you need to score at leasta 7
(included). What is the expected value of the sum above and below this

threshold?



Dice games - Solution

7Z = z&Y = 6]

Pl
E[Z]Y =6] = P[Z=zY =6 =95
2] > 2Pz =] =2 = P[Y = 6]
2€Z 2€Z
W = E[Z]Y] is distributed according to
w |45 55 65 75 85 9.5

_ 1 T T T T
PW=wl| § & & & &

[

Define G = {0,{2,3,4,5,6},{7,8,9,10,11,12},{2,3,4,5,6,7,8,9,10,11,12}}, and
Q = E[Z|]]

q | 4667 8.667
PR=d| 5 &
Q hereis a representation of the information contained in Z NOT a

conditioning that is necessary after an observation. Often called a



Properties

1. 1f P[A] # 0 then E[X|A] = E[X14]/E[14]

= E[1x_,1

reX reX P[A] P[A]
_ E[X14] _ E[X14]
P[4 E[14]

2. Linearity: E[aX + 8Y|G] = oE[X|G] + BE[Y|]]

ElaX +6Y|0) = Y E[(O[XPES/)])Y)IE] L)
Ecatom(G)
_ Z aE[XlEll[‘;]ﬁE[YlE]lE(w) = aE[X|G] + BE[Y|F]

Eeatom(G)



Properties

3. If X,Y are independent r.v. E[X|Y = y] = E[X] forally € V:

EIX|]Y =y] = z:x =) aP[X E[X].

reX reX

Hence E[X|Y] is a constant random variable.
4. Let X = f(Y), then E[X|Y] =

ELX[Y] =) E[f(V)]Y = ylly—y(w) = Y f(y)ly—y(w) = f(Y)

yey yey

Example 4 (Dice games)
Z =X +Y, X,Y independent then

E[Z|Y] =E[X + Y|Y] =E[X|Y] +E[Y|Y] =E[X]+Y =35+Y



Properties

5. Idempotence: E[E[X|G]|G] = E[X|F]

3 E[E[X]|G]1 ]

EE[X|G]|G] = oiE]

1p(w)
Eecatom(G)

- ¥

Eecatom(G)

E[EFeatom(g) E[X‘F]lFlE]
PlE]

El\W

Or.E

E[X|F|E[Lr1z]
= > 2 P[E] —15()

Ecatom(G) Featom(G)

> Spp () = ElXIg
Eecatom(G)




Properties

6. Expectation preservation: E[E[X|J]] = E[X]

EEX|G]]= > EX|EPE= > Y 2P[X=z|EPE

Ecatom(G) Ecatom(G) reX
=Y > aPX=z&E]=) xP[X =a1] =E[X]
zeX Ecatom(G) zEX

7. E[E[X|G]15] = E[X1g] forall E € G

E[E[X|G]1E] = E[E[X|G]1¢1E] = E[E[X|E]|1g] = E[X|E]E[1E]
) Ge%(g) 56;ch " ’
= E[XlE]E[lE] = E[X1g]

- E[1g]



Alternative definition

Property 7. is very important. Often times it is used as the defining property for CEs.

Definition 5
The random variable denoted by E[X|G] is the conditional expectation of X with re-
spect to G if:

® it is G-measurable;

® E[E[X|G]1g] =E[X1g]forall E € gG.

This definition is nice because does not require the use of atom(G) hence we need no
assumptions on G and plays nice with continuous-random variables (more rigorous).

With this definition one can prove that E[X|G] exist, is unique P-almost surely,
and has the properties that we saw up to this point.



Properties

8. Positivity: If X > 0 almost surely, then E[X|G] > 0.
Let £ denote the event F = {E[X|G] < 0} € G.
Since X > 0 then E[E[X|G]1g] = E[X1E] > 0 therefore P[E] = 0.

8 bis. Monotonicity: If X > Y almost surely, then E[X|G] > E[Y|]].

9. LetY be a G-measurable r.v, then E[Y|G] =Y.
Since Y is G-measurable, we can write Y = > 5 aiom(g) Yrle(w), .. Yis
constant for all £ € atom(G).

evigl = Y D= Yy EEE)
E[1g] E[1g]

Eecatom(G) Eecatom(G) Ecatom(G)

— oy el oy
. Ellg]
catom(G)




Properties

10. Multiplicativity on G: Let Y be a G-measurable r.v, then
EIXf(Y)I9] = E[X|G]f(Y).

EXY|Gl= > ERXY[Elgw) = Y

Ecatom(G) Ecatom(G)
E/X1r1 E/ X1
_ Z Z yrE[X1p E]lE(w): Z yrE| E]lE(w)
. Ef1] E[1]
catom(G) Featom(G) Ecatom(g)

— Z ypE[X|E)1g(w) = E[X|G]Y
Ecatom(G)




Algebraic representation of probability theory.

Recall from the first lecture that we can represent a probability space as a vector
algebra o7 C R™ (closed w.r.t. linear combinations and element-wise product A) and a
probability vector p € R”, s.t. p > 0and 17p = 1.

We can then represent random variables as vectors , e.g. « € ./ and indicator
functions as idempotent vectors, i.e. fg A fp = fE.

To compute probabilities and expectation values we can then take inner product e.g.
E[X] = (p,z) and P|E] = E[15] = (p, fE).

We now wonder: How do CEs look like in this setting?



CE in this setting
We represent the sub-o-algebra G as the sub-algebra % C «.

The CE E[-|G] is a linear map that takes rvs into rvs (prop. 2). We can thus
represent the CE as a matrix € R™"*™,

The CE is taken w.r.t. a specific probability measure, hence we denote it by E .
E[|G] takes F-measurable rvs into G-measurable rvs hence

Egm o — B
T —y=Egpx

where y € 4 is the vector representation of Y = E[X|G] thus ImE 3, = #.

Since (prop.5) E[E[X|G]|G] = E[X|G], then Ez pE% p = Ez p.



CEs are projectors onto
sub-algebras!



CE in this setting - other properties

E#,p is not necessarily an orthogonal projector, i.e. E%p #Ezp.
It still is orthogonal wrt a different inner product (z, y),, = Ep[z A y] = (p,z A y):

(z, E,@,py>p = (Ezp, y>p :

(Prop. 6) implies (p,Eg pz) = <E%7pp, w> = (p,x) hence E; [p] = p, or, in
other words, the state p is preserved by the dual of the CE E%p.

The above does not hold wrt other probability measures, i.e. E%p[q] £q.
For all fx € idem(2) we have (p, (Ezpx) A fr) = (p.x A f£) (prop. 7).

® Due to monotonicity (prop. 8), Ez j is a non-negative matrix s.t. Ez ,1 = 1 and
E’,, is stochastic.

Forally € Zwe have Eg ,(y) =y and Eg p(x Ay) = (Egpx) Ay (prop. 9, 10).



Use - Optimal least square estimator

Assume you have a rv X and a sub-c-algebra G (given for example by a series of
observations or by other random variables).

We would like to find a G-measurable rv Y that is the best approximation of X in the
least square sense, that is we want to solve the minimization problem

Y*=arg min E[(X —Y).

Y, G-meas.



Optimal least square estimator - Algebraic proof

In algebraic terms, given « € &7 and a sub-algebra %4 C .« we want to find y* € 4,
s.t.

* : _ )2
y —arggé{gj@, (x—y)°)
Note that
(p,(x—y))=p.z-yA(lx—y)=(x—yz—y),=z—yl.

It is now trivial to see that y* is the orthogonal projection of  onto % where the
notion of orthogonality is given wrt (-, ->p. Thus y* = Eg px.



Optimal least square estimator - Usual proof

Alternatively,

E[(X —Y)?] = E[(X — E[X|G] + E[X|G] - V)?]
= E[(X — E[X]G])*] + E[(E[X|G] - Y)?] + 2E[(X — E[X|G)) (E[X|G] — V)]

G-meas.

= E[(X — E[X|G])*] + E[(E[X|G] — Y)’]
where we used the fact that for any G-measurable rv Z we have

E[(X — E[X|G])Z] = E[XZ] — E[E[X Z|¢]] = E[XZ] — E[XZ] = 0.

Since E[(E[X|G] — Y)?] > 0, then for any G-measurable rv Y:
E[(X —Y)?] > E[(X — E[X|F))?].



Quantum CEs



Brief review of x-algebras

We define a x-algebra <7 as an operator space closed under matrix multiplication and
adjoint action.

XYed=X+Yeods X Yieas and XY e

Remember: It is the fundamental mathematical structure that supports a quantum
probability space.



Examples

) = spanf{o;, j=0,z,y,2}=C>>*2 dim(e/) =4

aly = span{o; ® oy, j,k=0,2,y,2} = ch4, dim(eA) = 16

oy = span{o; @ oy, j=0,2,y,2,k=0,2} CC> dim(.e73) = 8
oy = spanf{o; @ oj, j=0,z,y,2} C C>4 dim(e7) = 4

o5 = span{|j)(j|, j=0,1,2,3} CC¥  dim(es) =14

<7, and <75 have the same dimension. Are they the same algebra?
If not how do we distinguish them?



Wedderburn decomposition

For any algebra <7, there exist an Hibert space decomposition

H = @st ®HF,k D Hp
k

and a unitary operator U such that

o =U (@ B('H&k) ® lF,k; D OR> Ut.
k

Note: some values are repeated multiple times
hence we can find a smaller isomorphic
representation & ~ @, B(Hsy) = .



Examples

o =span{oj, j=0,z,y,2}=C>*?
oty = span{o; ® oy, j,k=0,z,y,2} = CH4

oty = span{o; @ o, j=0,2,y,2 k= 0,2} ~ C*2 @ C2x2
oy = span{o; @ 0;, j=0,z,y,2} ~ C>*?

oy = span{|j)(j|, j=0,1,2,3}~CaCaCaC



Quantum CE - Definition

Definition 6
A conditional expectation Ez ,[-] is a positive projector onto a unital algebra %

E,@ﬂo s — B.
A conditional expectation preserves a state p € ©(#) when, for all X € B(H)

Ep[E,[X]] = trlpEus, [ X]] = tr[pX] = E, [X].



Properties

Proposition 1
Let £ : o/ — % be alinear, and unital map, i.e. £(1) = 1. Then & is contractive in the
operator norm if an only if £ is positive, that is:
IE[ANll,, < ||All,, VA€ o & E(ATA)>0,VAe 4.
This proposition is quite useful because there exists a very powerful theorem that
talks about projectors between x-algebras that are contractive in the operator norm.



Properties - Tomiyama

Theorem 7 (Tomiyama 1957)
LetIly : & — % be a projection from <7 onto 4, contractive in the operator norm, i.e.
[Tz (X)lop < (1 X ]op-
Then 114 enjoys the following properties:
1. Tl is positive and unital, i.e. TIz(ATA) > 0forall A € o7, and T1(1) = 1;
2. Ty is B-linear, i.e. forall A € o and By, By € %, l14(B1ABy) = B1ll4(A)By;

3. Iy satisfies the Kadison-Schwartz inequality T14(A) TI4(A) < I»(ATA) for all
Ae .

Corollary 8

Let Iy : &7 — 2 be a positive projector between x-algebras, then I14[-] is completely
positive.

CEs are automatically CP and unital.



Properties - Orthogonality

Let consider a full rank density operator p and let us define the inner product

(X,Y), = tr[pXTY]

Proposition 2
Consider a CE Ey , that preserves the state p. Then Ey , is orthogonal wrt the inner

product (-, ), i.e. (X, E%p(Y))p = <E,@,p(X),Y>p.

Proof.
Using state preservation, B-linearity and positivity we get

(X,Ez,(Y)), = trlpX'Eg,(Y)] = t1[0E.2,,(XEz,,(Y))] = tr[0E.2,,(X) Ez,0(Y)],

(Ezp(X),Y), = tr[pEg,,(X)TY] = tr[pE 5,5 (Ez,,(X)TY)] = tr[pE,,(X)Eg,,(Y)].
[]



Properties - Existence

Theorem 9 (Tomita-Takesaki theorem)

Suppose p € D(H) is an invertible density matrix. The following conditions are equiv-
alent:

1. A conditional expectation Ez ,[-| : &/ — 2, that preserves p exists;
2. Bis M,(-) = p* - p~invariant VA € C, i.e. for every B € % it holds

P Bp~ € B.

The proof that follows is inspired by Petz’s “Quantum Information Theory and
Quantum Statistics”.

Here we prove it in the finite-dimensional case but it holds also for
infinite-dimensional algebras.



Tomita-Takesaki Proof of (1.) = (2.)

This comes directly from the block structure of fixed points of CP and unital maps
whose dual admits a full-rank equilibria (seen in the previous lecture).

fix(E|z,) = # = @%(H57k) ® 1py implies p = @Tk ® o € ﬁX(E‘%’p)
k k



Tomita-Takesaki Proof of (1.) = (2.)

Alternative proof from Petz:
e Let us denote by S the conjugate linear operator, i.e. S(X) = XT, VX € B(H).
e Let us also denote by x the adjoint operator wrt (-, ->p, eg. Ey,=Ez,.

e Then S*(X) = pXTp~! since:

(S(X),Y), = trlpXY] = u[YTp 1 pXTg] = ufpXTpYTp 1] = (X, p¥Tp 1), = (S*(Y), X)), .

e Since Ez , is positive, Ez ,S = SEz,,.
e Furthermore, since E_*%p =Eg,, thenEy ,5* = S*Ey .

e If we then define A = §*S, A(X) = pXp~!, we have AEy , = E» ,A
as well as AYEy , = Ey ,A" with A (X) = p X p~*t.
e To conclude we have

A" B = N'Ey ,of =Eyp N'of =Ey o = B.



Tomita-Takesaki Proof of (2.) = (1.)

Prove that E 3 1 /,,, @ positive projector onto % preserving 1/n, exists.

e £ : o/ — % be the orthogonal (wrt (-, -) ;;5) projector onto %, i.e. £2 = £ = &1.
e |t exists as it is just a projector onto an operator subspace.
e Since A is unital, then £(1) = 1, hence & preserves 1/n in the sense

tr[1/nE(X)] = tr[1/nX].

e It then remains to prove that £ is also positive (in the sense that maps positive
semidefinite operators into positive semidefinite operators). Recall that X is positive
semidefinite iff tr[YTX] > 0 for all Y > 0. Consider the X > 0.

(B,E(X)) s = (€(B), X) g = tr[B'X] > 0

for all positive semidefinite B € #4. Hence £(X) € 4 is positive semidefinite.



Tomita-Takesaki Proof of (2.) = (1.) continues

Assumption 2. holds if and only if that is

p= @Tk ® o, Where %A= @‘B(Hs,k) ® 1pk.
k k
< is trivial. = is quite technical, we just give an intuition.
¢ Note that M, ;,, is a unitary super-operator group as p°# is unitary:
pi‘ppm = p¥p~i = 1. Let p'¥ = e'¥ and L() = —i[H, -]
® The fact that # is M, ;, invariant implies that:

o Taking the derivative, the off-diagonal blocks must be zero, i.e. L(#) C B, B(Hx).
o In the diagonal-blocks, there can not be entanglement thus

L(B) = @£S,k(Bk)®1F,k+1S,k:®£F,k(1F,k:) & H= @H&k@lp}k"‘l&k@Hﬂk.
k k

o Lri(1ry) =0, already satisfied.



Tomita-Takesaki Proof of (2.) = (1.) continues

Define pg = £(p) € A. Under assumption 2. we want to prove that, for all
B c %:
1 1 1 _1
p2Bp~2 = pg Bpy *.
As B € %, it admits a decomposition as B = @, Br, ® 1p.
From step 2:

P:@Tk@wk then pg :@Tk@)lF,k

thus:



Tomita-Takesaki Proof of (2.) = (1.) continues

_1 _1
Define 7,(X) = p, 2S(p%Xp%),oo % and observe:
® F,is CP and preserves p:

1 1 1

_1 1 1 _1 1
tr[pF,(X)] = tr[ppy E(p2 X p2)py *] = tr[i’(po ppo 2)p2 X p2]
_1 _1 4
= tr[py 2E(p)py * p2 X p?] = tr[po Popy 2piXph ] = tr[pX];

® Under assumptlon 2. we have for aII B € A, that

_ 1y 1
Fp(B) = py *E(p2 Bp?)pg —p025(p23p 2p)p0 2 = py 2 p2Bp 2 E(p)py ?
co

|—=

1 1

_ 1 _1 _1 _1 _1
= po “pg Bpo *E(p)py * = Bpy *popy > = B

[
[un

hence 7, acts as the identity on % and, since ImF, = %, then F, = F,.



Understanding the theorem

Given 4, there always exists a positive projector (CE) onto 4 that
preserves a state, but, given 2 AND p, there might not exist a positive projector onto
A that preserve that particular state p.

Take o = B(H1 ® Hy) and B = B(H;) ® 1o.

If p = p1 ® po then E,@yp[X] = try, [X (11 & p2)].
If p # p1 @ po then #E 4 ,, positive and such that p is preserved.

This is a from the classical case - for every commuting subalgebra
and distribution a conditional expectation fixing the latter exists!



CE and their block representation

Theorem 10
Let Ez ,[-] be a conditional expectation onto %, a unital x-subalgebra of <7. Then,
there exists a set of density operators {7, € ®(H )} such that, for all X € B(H)

K-1
Eugyp[X (@ tI"Fk [ WkXW )(1dk®7'k)} ®1Fk) UJr
k=0

where W, are partial isometries W,I cHp — H, st WkW,I =14, and W,IWk =1IIy,.

Lemma 11

Let E» , be a conditional expectation that preserves p > 0. Then Ey , is orthogonal
wrt the inner product (X,Y) , , = tr[XTp*Y p' =], for all X € [0, 1].



State extensions - Definition

Definition 12
The adjoint operator of the conditional expectation E5 , with respect to the Hilbert-

Schmidt inner product takes the name of state extension, denoted as Jz ,,[-] = Ej&pH,
i.e. (X,Ez,[Y]) ;g = (32,[X],Y) g forall X,Y e B(H).

A conditional expectation Ez ,|-], preserves p if and only if p is a fixed point of its state
extension, i.e.
EpEz,lll =Eol] < Jaz,lel =p.
Since Ez , is CP and unital J 4 , is CPTP.
J4., is orthogonal wrt tr[ X Tp=*Y p*~1] for all A € [0, 1].

E#,, produces a coarse-graining of observables (Heisenberg picture) while
J,, produces a coarse-graining of states (Schroedinger picture).



Factorization of state extensions
Jz.,[-] can be factorized in two non-square CPTP factors
J%mf]::j7€

suchthat R : & — #Zand J : # — % and RJ = I, (and also, Ey , = RI 7).

K K
R(X) = @trHF,k (Vk*XVk) = @Xs,k = X, 1
k=1 k=1

K i 2
j(X)ZU(@ng@O'k) U*. an \
k=1 c

J is a x-homomorphisms, i.e. is an isomorphisms \
"7 C

st. J(XY) = J(X)J(V) and J(X1) = 7(X).



Reduction of CP dynamics

Given a CPTP map A, its restriction onto the algebra %,
Alz = RAT

is CPTP.

Given a Lindblad-GKS generator L, its restriction onto the algebra %
Llg =RLT

is still a Lindblad-GKS generator.



Convergence to common fixed
points by alternating projections



Alternating projections

Consider two *-subalgebras %, %, C <. Assume there exists a density operator
p > 0such that 3E», ,,E», ,, thatis, p is compatible with both %, and %;.
Then, Ex, ,,Ex, , are orthogonal wrt the same inner product (-, -) .
Theorem 13 (von Neumann-Halperin alternating projections)
Let Hi,...,H, be closed subspaces in a Hilbert space # ad let P, be the (co-
Jorthogonal projections. Then

lim (PH1 000 PHT)n =P

n—oo

where P is the orthogonal projection onto ﬂ;zl H;.

This implies that

lim (Eg4 E4 n = E 7
n_mo( B1,p ﬁzvﬂ) B1NBa,p

where %, N %, is a x-subalgebra of <.



Common fixed points

Consider now two CPTP maps &;, . Assume Jp > 0 such that p € Fix(&;) N Fix(&2).
Then, %, = Fix(EjT) and their Césaro means are

1 N
— ; k
Jz0 = I N kzl &

thus

JLIEO(J%LPJ%W)” =J%n%:.p
where Jz %, is the CPTP projector onto Fix(£1) N Fix(&y).
If Fix(&€1) N Fix(&2) = {p} then, for all py € D(H):

Jim (37,,03:2,,0)" po = p.



Bayesian parameter estimation

e (Classical case;
® Quantum Measurement;
® Hybrid classical-quantum.



Classical Example - Dungeon & Dragons

Assume you are playing D&D and your master, hidden from you, tosses two dice.
The first (fair) die has 6 faces and, depending on its outcome, he tosses a second
(fair) die with a number of faces equal to the outcome of the first toss and tells you the
outcome of the second toss.

We would like to estimate the value of the first die.

We model this problem by considering two discrete random variables:
® The first, X is hidden from us but we know that is uniformly distributed in [1, V]
(with N =6),i.e. X ~U([1,N]);
® The second instead, Y is uniformly distributed in [1, X], i.e. Y ~ U([1, X]), and
we know its outcome y;

® We would like to compute E[Z|Y] for some random variable Z = ¢(X) (X, Z are
measurable wrt the same o-algebra).



Probability distribution

We know that X ~ ¢([1, N]) thus px(z) = % while Y ~ U([1, X]) hence

1)z ify<zx
0 otherwise

PY\X(ZUW = {

which implies

ﬁ ify <z

pxy(z,y) = PY\X(?J|$)PX($) = {0 otherwise



Algebraic modelling

Consider an Hilbert spaces H = CV. Let {|j)} form an orthonormal base for .
We then construct two sub-algebras %, = alg{|j) (j| ® 1x} and %2 = alg{1y ® |5){j|}
which are subalgebras of o7 = {|j)(j| ® |k)(k|} C B(HH).

The state of the system then is:
N

p= > pxy(@y)|y)yl @)zl
z,y=1

and the observables X,Y and Z are
N

N
Y = (Zyy)(y) ® 1y € %, X=1y® (ZJE|J)><I‘|> € %, and

y:l rx=1

N
Z=1y® (Z g(x) |x><x|> € B,

r=1



Conditional expectation construction

Conditioning on observations of Y is equivalent to take a CE onto #;.
Trivially, 3E 4, ,, as this is just a complex way of representing classical probability
theory. In fact, since they are both diagonal.

Note that %, = @, C® 1y and

N N

p=@rry @7, where 7, = pyy(zly)|z)(z] € CVN
y=1 =1

hence:

N
Ean 2] = Ptr (W 2w @ 7)| @ 1y
y=1

where W, = (y| ® 1y.



Double-check

N
Eu@hp[z] = @tr

y=1

® 1y

(yly) ® (Zg ) |) :EI) (prw y) &)z \)

N
> g(@)pxy (aly) ®1N—-GDEJQYY—9]®1N
1 z=1 y=1

Elg(X NY=M

P =

<
Il

y 1 2 3 4 5 6
PY =y | 41 24 16 .1 .06 .03
E[X]Y =y] | 244 344 421 486 545 6




If the CE exists.

Letus call Z(Y) = E, ,[Z]. Then:
e Z(Y)is an unbiased estimator of Z, i.e. E,[Z] = E,[Z(Y)];
® |s optimal in the least-square sense (minimal error variance), i.e.

~

7 = arg ?(1)1/% E(Z — f(V)(Z - f(V))]

(easily proven by the orthogonality of E, , wrt (X, Y>p =E,[XY])



Quantum measurement

Let consider a finite-dimensional quantum system H ~ C" and let &/ = Z(H).

Let assume that the system is in a state p € ©(#) and that we perform the
measurement of an observable O € §(H).

For simplicity let us assume that O = >""_, o; [5)(j| (no degeneracy and we work in
the basis that diagonalizes O).

After the measurement we assume to have another observable, say X € $(#) and
we would like to compute the optimal least-square estimator of the state of the
quantum system after the measurement. That is, we want to find

arg?(l(i% E-[(X — £(0))' (X — f(0))]-



Quantum measurement
After the measurement of O, the state of the quantum system is

17) i1 p 1)l (Jlpli)
p; Wwhere p;= —7"—0.
ZZk 1 /7<7|P|]€ @ ! T Zk:l <k3|P|k?>

Note that p is compatible with % = alg({j)(j|}}-;) hence 3 Ex ,.
Again:
® E4 ,[X]is an unbiased estimator of X, i.e. E,[X]| = E,[Ez ,[X]];
® js optimal in least-square sense:

Exzp[X] = arg?(liog Ey[(X — F(0)'(X — f(O))].

Note that here X does not need to commute with O.



Quantum parameter estimation

Assume you have a hidden discrete random variable X that influences the state of a
quantum system on which you can perform measurements. We would like to estimate
the hidden random variable based on measurements of the quantum system.
(Inspired by recent works by Mankei Tsang).

Consider two Hilbert spaces 7 and H¢. Our probability space is (<7, p) where
A =B(Hg) @alg({l7)(J1};51) € B(Ho @ Ho)

and, given a prior in the hidden variable p, € R"¢ and the initial state of our quantum
system 1y € ©(Hg) we have
po = To @ diag(po)-



Parameter influence

The random variable X then takes value z; with probability p;. We can thus model it

as
X=1p® (Z zj j><j) :

=1

We here assume that the parameter influences the state of the system trough a

parametric unitary rotation, i.e.
T\x — einToe_in.

After this influence, the state of the joint (quantum-classical) system is

nc
pL=>  Ta, ®p; 7).
=1



Measurement

We then assume to perform a measurement on the quantum system of a
non-degenerate observable O € H(Hg), O = 3.2, o; |k) (k|.
The state of the system after the measurement is then

(1) (k] @ 1)1 () (k] @ 1) _ xx_s (K| 7, 1K)y .
p2= kZ . ;;Zlm e T R @100

Now, p9 is diagonal, hence is compatible with Z = alg({|k) (k| @ 1¢}).

3 Ez,p,, and it’s the same one we saw in the beginning (classical example).

nQ
Ej5,0,[X] = P tr[Wi X W, (1® )] @ 1o
k=1
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Quantum Model Reduction

Based on [arXiv:2412.05102].



The model

L is a Lindblad generator

B(H) = Crxn
p are density operators:
peC™ p=pl >0, tr[p] =1

po is the initial condition

pt) = L1 p(t) ]

{ Y(t) =

Y (t) € C™*™ is the output of
interest, the one we want to
preserve

) Po € @(/H)

C [p(t)]

C is a linear output map



The problem: quantum model reduction

Given a Quantum System
want to find another QS (
t>0andall pg € D(H), p

(£, C) defined by a generator £ and an output map C we
L,C) and a linear map ® : C"*"™ — C"*" such that for all
o=

(o]

¢ exact model reduction o
Cle“ [pol] = Cle*[po]l;

® approximate model reduction (future work)

Cle“ po]] = Cle“ (4o



Symmetries

Let U be a unitary operator, UUT = 1, and define U(p) = UpU*.
Let {7:}i>0 = {€“'}1>0 be the quantum dynamical semigroup generated by L.

Definition 14
U is a symmetry for L if
[T, U] =0, Vt>0.

By continuity of the semigroup we have that U is a symmetry if an only if [£,U/] = 0.
Definition 15
e Strong symmetry if [H,U]| = [Lj, U] = 0;
® Weak symmetry if [£,U] = 0.

Note that: (1) Strong implies weak; (2) Symmetries form a group; (3) A symmetry for
L is also a symmetry for £T.



Symmetries and invariant subspaces

Proposition 3
If U is a symmetry for £, operator eigenspaces of U are L-invariant.

Proof.
Take X € B(H) such that (X) = vX and denote by Y = £(X). Then

UY) =ULKX) = LUX) = vL(X) = vY

hence any v-eigenoperator of U/ is mapped trough £ to a v-eigenoperator of i/, thus
the v-eigenspace is L-invariant. O

Because U is normal, we can decompose the space of operators into £L-invariant
subspaces as

B(H) = GB eigsp,, (U).

J



Invariant algebras

Consider now a unitary subgroup ¢ of weak symmetries for L,
i.e. VU € ¢ we have L(U - UT) = UL(-)UT.

The commutant of 4, ¥’ = {X € B(H)|[X,U] = 0,VU € ¢}:
® is a unital x-algebra;
® is the intersection of the 1-eigenspaces of symmetries in ¢,

9" = () eigsp; (U);
ve¥

® is £- and LT-invariant.

But then JE,¢/ 1, Which is a CP unital and orthogonal projector (and thus CPTP)
onto an invariant subspace!



What does this mean?

Consider py € ¢'. Because ¢’ is L-invariant we have that p(t) = e“!py € ¥', Vt > 0.
Then,

p(t) = Eg1/ulp(t)] = Ejg 1/ne5191/m B9 /mt 5y
Using Ejg 1/, = IR, RJ = I, the two CPTP factors defined last time, then we have

{p(t)zﬁ[p(t)] O =py = {5(t)=7zw[f)(t)] 5(0) = R(po)

Y(t) = Clp(t)] Y(t) =CTp(t)]

in the sense that
CeFt(po) = CTeRT R (po) vt > 0.

Furthermore, RLJ is a Lindblad generator!



Observable symmetry-based reduction

Assume now that C(p) = tr[Op] and O € ¥'. Because ¢’ is ALSO Li-invariant we
have that O(t) = L0 e ' vt > 0.
Then, r

tr[Op(t)] = tr[Oe™ (po)] = trle”*(0)po] = tr[Ejy 1/2[O(t)]po].
Using again Ei 1/, = IR, RJ = Z ; the two CPTP factors defined last time, then we
have

{p<t> =Ll o = {m) =RLIIp()
Y (1) = Clo(t) Y(t) = CT1p(1)

in the sense that

p(0) = R(po)

CeF(pg) = CTeRET R (po) VWt > 0.



Operator-dependent symmetries

What if we are interested in operators that are not in ¢¥'?

Definition 16
A unitary U is an operator-dependent symmetry (ODS) for an observable O if U(p) =
UpUT satisfies:

[T, u](0) =0, Vt>0

U©) =0

Equivalent condition /L% (0) = £*/(0O) for all k € N.
Note that all symmetries are ODS for the observables in the commutant of their group.



Operator-dependent symmetries

If we now define ¢ as a group of ALL ODS for the observable O and generator £, we
can prove that ¢’ is the minimal x-algebra containing em[O] forallt > 0:

@' = alg{L*]0], Yk € N}.

This gives us a numerical method to compute ¥".
Using the same procedure as before we can perform model reduction.

¢’ is not necessarily £f-invariant but contains the smallest £-invariant
subspace that contains O, and this is the important fact.



Example - Central Spin System

H=Hs®1p+ 3 (Aol + A0, + Ao )

e =60 vk e bath
where Y (t) = tr[p(t)].

Weak symmetries are composed by bath permutations.

If we introduce a bath term S

Hp = Yoes B (0908 + 000l 4 000

to H, the symmetries become ODS.

Oz



Reduction

The dimension of & = ¥’ fjg— e
scales with N while L dﬁg?;,{)) :
the dimension of B(H) is 4. o max; dig(%mm)) i

—e—dim(At) - XYZ
The dimension of the largest —e— dim(A#"+) - Heis
block grows with N2. \ dim(0)

We can efficiently parallelize il
the simulation if the symmetry
is strong (case with collective
dissipation). 2




