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Agenda

• Classical Conditional Expectations (CE) - a brief review:
◦ Definitions,
◦ Properties,
◦ Their use - Maximum likelihood estimator;

• Quantum CEs:
◦ Definition,
◦ Properties (Tomita-Takesaki Theorem),
◦ Their use:

■ Convergence to common fixed points by alternating projections;
■ Bayesian parameter estimation (maybe next time);
■ Model reduction (next time).

Disclaimer: We here consider ONLY discrete random variables.
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Classical CEs
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Motivating example - dice games
Imagine tossing two fair dice and take the sum of their outcomes.
Let X,Y be the random variable associated to each die toss, i.e. the alphabet
X = Y = {1, 2, 3, 4, 5, 6}, and each outcome has probability 1/6.
The sum, is a random variable Z = X + Y distributed according to

z 2 3 4 5 6 7 8 9 10 11 12

P[Z = z] 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

We would like to know:
1. What is the expected (weighted average) value of the sum (Z) assuming that one

die came out as a 6 (e.g. y = 6)?
2. How can we represent this information for any value of one die (Y )?
3. Assume that, to win this turn of the dice game, you need to score at least a 7

(included) and depending on the actual sum you score points. What is the
expected value of the sum above and below this threshold?
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Different notions of conditional expectations

When studying (classical) probability theory, one encounters different definitions
associated to the notion of “conditional expectations”.

These definitions are often categorized as:
• CE (value) given an event;
• CE given a random variable;
• CE given a σ-algebra.

We shall see that these are actually a renaming of the same object.
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CE (value) given an event - Definition

Let (Ω,F ,P) be a probability space and let X be a F-measurable random variable
taking values in the alphabet X and let E be an event E ∈ F .

Definition 1
The conditional expectation (value) of X given that the event E ∈ F was observed,
E[X|E], is defined as the value:

E[X|E] ≡
∑
x∈X

xP[X = x|E].

Intuition: usual definition of expected value with the use of the probability conditioned
on the event E.
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Observation on the naming

According to this definition, E[X|E] is just a scalar value.

However, to keep agreement with the definitions that follow we can extend this
definition to obtain a random variable by simply multiplying the conditional
expectation value by the indicator function associated to the event.

That is, E[X|E]1E(ω) is now an F-measurable random variable.
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Case with two random variables

Let X and Y be random variables defined over the same probability space (Ω,F ,P)
taking values in the alphabets X ,Y.

Events of interest in this case include when one of the two random variables assume
a value, e.g. Y = y. In that case, The conditional expectation (value) of X given that
Y has taken value y ∈ Y is

E[X|Y = y] ≡
∑
x∈X

xP[X = x|Y = y].

Note that, we have constructed a function g(·) that, given an outcome y ∈ Y returns
the conditional expectation (value) g(y) = E[X|Y = y].
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CE given a random variable - Definition

Let X and Y be random variables defined over the same probability space (Ω,F ,P)
taking values in the alphabets X ,Y.

Definition 2
The conditional expectation of X given Y is then the random variable g(Y ) which
takes the value E[X|Y = y] with probability pY (y), i.e.

E[X|Y ] ≡
∑
y∈Y

(∑
x∈X

xP[X = x|Y = y]

)
︸ ︷︷ ︸

E[X|Y=y]

1Y=y(ω)

where 1Y=y(ω) is the indicator function of the event Y = y.
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CE given a σ-algebra - Definition

Let (Ω,F ,P) be a probability space and let X be a F-measurable random variable
taking values in the alphabet X . Let G be a sub-σ-algebra of F and let atom(G) be
the set of atomic events of G.
Note: Here we need to assume that G is generated by a finite set of events, atom(G).

Definition 3
The conditional expectation of X given a σ-algebra G, E[X|G], is defined as the G-
measurable random variable:

E[X|G] ≡
∑

E∈atom(G)

E[X|E]1E(ω).
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Note on the equivalence of the three definitions

CE given an event (r.v.s not values) are simply CE given the σ-algebra
G = {∅, E,Ec,Ω}.

CE given a random variable Y are simply CE given the smallest σ-algebra that makes
the r.v. Y measurable, i.e. G = σ({Y = y}y∈Y) and atom(G) = {Y = y}y∈Y .

The three different naming we saw do not refer to different notions of conditional
expectations rather to different ways of specifying a σ-algebra.
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Motivating example - dice games
Imagine tossing two fair dice and take the sum of their outcomes.
Let X,Y be the random variable associated to each die toss, i.e. the alphabet
X = Y = {1, 2, 3, 4, 5, 6}, and each outcome has probability 1/6.
The sum, is a random variable Z = X + Y distributed according to

z 2 3 4 5 6 7 8 9 10 11 12

P[Z = z] 1
36

2
36
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36
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36
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36
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We would like to know:
1. What is the expected (weighted average) value of the sum (Z) assuming that one

die came out as a 6 (y = 6)?
2. How can we represent this information for any value of the die (Y )?
3. Assume that, to win this turn of the dice game, you need to score at least a 7

(included). What is the expected value of the sum above and below this
threshold?
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Dice games - Solution

E[Z|Y = 6] =
∑
z∈Z

z P[Z = z|Y = 6] =
∑
z∈Z

z
P[Z = z&Y = 6]

P[Y = 6]
= 9.5

W = E[Z|Y ] is distributed according to

w 4.5 5.5 6.5 7.5 8.5 9.5

P[W = w] 1
6

1
6

1
6

1
6

1
6

1
6

Define G = {∅, {2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}, {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}}, and
Q = E[Z|G]

q 4.667 8.667

P[Q = q] 5
12

7
12

Q here is a coarse representation of the information contained in Z NOT a
conditioning that is necessary after an observation. Often called a coarse-graining. 13/73



Properties

1. If P[A] ̸= 0 then E[X|A] = E[X1A]/E[1A]

E[X|A] =
∑
x∈X

xP[X = x|A] =
∑
x∈X

x
P[X = x&A]

P[A]
=

∑
x∈X xE[1X=x1A]

P[A]

=
E[X1A]

P[A]
=

E[X1A]

E[1A]

2. Linearity: E[αX + βY |G] = αE[X|G] + βE[Y |G]

E[αX + βY |G] =
∑

E∈atom(G)

E[(αX + βY )1E ]

P[E]
1E(ω)

=
∑

E∈atom(G)

αE[X1E ] + βE[Y 1E ]

P[E]
1E(ω) = αE[X|G] + βE[Y |G]
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Properties

3. If X,Y are independent r.v. E[X|Y = y] = E[X] for all y ∈ Y:

E[X|Y = y] =
∑
x∈X

x
P[X = x]P[Y = y]

P[Y = y]
=
∑
x∈X

xP[X = x] = E[X].

Hence E[X|Y ] is a constant random variable.
4. Let X = f(Y ), then E[X|Y ] = X.

E[X|Y ] =
∑
y∈Y

E[f(Y )|Y = y]1Y=y(ω) =
∑
y∈Y

f(y)1Y=y(ω) = f(Y )

Example 4 (Dice games)
Z = X + Y , X,Y independent then

E[Z|Y ] = E[X + Y |Y ] = E[X|Y ] + E[Y |Y ] = E[X] + Y = 3.5 + Y
15/73



Properties

5. Idempotence: E[E[X|G]|G] = E[X|G]

E[E[X|G]|G] =
∑

E∈atom(G)

E[E[X|G]1E ]
P[E]

1E(ω)

=
∑

E∈atom(G)

E[
∑

F∈atom(G) E[X|F ]1F1E ]

P[E]
1E(ω)

=
∑

E∈atom(G)

∑
F∈atom(G)

E[X|F ]

δF,E︷ ︸︸ ︷
E[1F1E ]

P[E]
1E(ω)

=
∑

E∈atom(G)

E[X|E]

P[E]
1E(ω) = E[X|G]
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Properties

6. Expectation preservation: E[E[X|G]] = E[X]

E[E[X|G]] =
∑

E∈atom(G)

E[X|E]P[E] =
∑

E∈atom(G)

∑
x∈X

xP[X = x|E]P[E]

=
∑
x∈X

∑
E∈atom(G)

xP[X = x&E] =
∑
x∈X

xP[X = x] = E[X]

7. E[E[X|G]1E ] = E[X1E ] for all E ∈ G

E[E[X|G]1E ] =
∑

G∈atom(G)

E[E[X|G]1G1E︸ ︷︷ ︸
δE,G

] = E[E[X|E]1E ] = E[X|E]E[1E ]

=
E[X1E ]

E[1E ]
E[1E ] = E[X1E ]
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Alternative definition

Property 7. is very important. Often times it is used as the defining property for CEs.

Definition 5
The random variable denoted by E[X|G] is the conditional expectation of X with re-
spect to G if:
• it is G-measurable;
• E[E[X|G]1E ] = E[X1E ] for all E ∈ G.

This definition is nice because does not require the use of atom(G) hence we need no
assumptions on G and plays nice with continuous-random variables (more rigorous).

Note: With this definition one can prove that E[X|G] exist, is unique P-almost surely,
and has the properties that we saw up to this point.
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Properties

8. Positivity: If X ≥ 0 almost surely, then E[X|G] ≥ 0.
Let E denote the event E = {E[X|G] < 0} ∈ G.
Since X ≥ 0 then E[E[X|G]1E ] = E[X1E ] ≥ 0 therefore P[E] = 0.

8 bis. Monotonicity: If X ≥ Y almost surely, then E[X|G] ≥ E[Y |G].
9. Let Y be a G-measurable r.v, then E[Y |G] = Y .

Since Y is G-measurable, we can write Y =
∑

E∈atom(G) yE1E(ω), i.e. Y is
constant for all E ∈ atom(G).

E[Y |G] =
∑

E∈atom(G)

E[Y 1E ]

E[1E ]
1E(ω) =

∑
E∈atom(G)

∑
E∈atom(G)

yFE[1F1E ]
E[1E ]

1E(ω)

=
∑

E∈atom(G)

yEE[1E ]
E[1E ]

1E(ω) = Y
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Properties

10. Multiplicativity on G: Let Y be a G-measurable r.v, then
E[Xf(Y )|G] = E[X|G]f(Y ).

E[XY |G] =
∑

E∈atom(G)

E[XY |E]1E(ω) =
∑

E∈atom(G)

E[XY 1E ]

E[1E ]
1E(ω)

=
∑

E∈atom(G)

∑
F∈atom(G)

yFE[X1F1E ]

E[1E ]
1E(ω) =

∑
E∈atom(G)

yEE[X1E ]

E[1E ]
1E(ω)

=
∑

E∈atom(G)

yEE[X|E]1E(ω) = E[X|G]Y
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Algebraic representation of probability theory.

Recall from the first lecture that we can represent a probability space as a vector
algebra A ⊆ Rn (closed w.r.t. linear combinations and element-wise product ∧) and a
probability vector p ∈ Rn, s.t. p ≥ 0 and 1Tp = 1.

We can then represent random variables as vectors , e.g. x ∈ A and indicator
functions as idempotent vectors, i.e. fE ∧ fE = fE .

To compute probabilities and expectation values we can then take inner product e.g.
E[X] = ⟨p,x⟩ and P[E] = E[1E ] = ⟨p,fE⟩.

We now wonder: How do CEs look like in this setting?
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CE in this setting
1. We represent the sub-σ-algebra G as the sub-algebra B ⊆ A .

2. The CE E[·|G] is a linear map that takes rvs into rvs (prop. 2). We can thus
represent the CE as a matrix ∈ Rn×n.

3. The CE is taken w.r.t. a specific probability measure, hence we denote it by EB,p.

4. E[·|G] takes F-measurable rvs into G-measurable rvs hence

EB,p :A → B

x → y = EB,px

where y ∈ B is the vector representation of Y = E[X|G] thus ImEB,p = B.

5. Since (prop.5) E[E[X|G]|G] = E[X|G], then EB,pEB,p = EB,p.
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CEs are projectors onto
sub-algebras!
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CE in this setting - other properties

• EB,p is not necessarily an orthogonal projector, i.e. ET
B,p ̸= EB,p.

• It still is orthogonal wrt a different inner product ⟨x,y⟩p ≡ Ep[x ∧ y] = ⟨p,x ∧ y⟩:〈
x,EB,py

〉
p
=
〈
EB,px,y

〉
p
.

• (Prop. 6) implies
〈
p,EB,px

〉
=
〈

ET
B,pp,x

〉
= ⟨p,x⟩ hence ET

B,p[p] = p, or, in

other words, the state p is preserved by the dual of the CE ET
B,p.

The above does not hold wrt other probability measures, i.e. ET
B,p[q] ̸= q.

• For all fE ∈ idem(B) we have
〈
p, (EB,px) ∧ fE

〉
= ⟨p,x ∧ fE⟩ (prop. 7).

• Due to monotonicity (prop. 8), EB,p is a non-negative matrix s.t. EB,p1 = 1 and
ET

B,p is stochastic.
• For all y ∈ B we have EB,p(y) = y and EB,p(x ∧ y) = (EB,px) ∧ y (prop. 9, 10).
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Use - Optimal least square estimator

Assume you have a rv X and a sub-σ-algebra G (given for example by a series of
observations or by other random variables).

We would like to find a G-measurable rv Y that is the best approximation of X in the
least square sense, that is we want to solve the minimization problem

Y ∗ = arg min
Y,G-meas.

E[(X − Y )2].
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Optimal least square estimator - Algebraic proof

In algebraic terms, given x ∈ A and a sub-algebra B ⊆ A we want to find y∗ ∈ B,
s.t.

y∗ = argmin
y∈B

〈
p, (x− y)2

〉
Note that〈

p, (x− y)2
〉
= ⟨p, (x− y) ∧ (x− y)⟩ = ⟨x− y,x− y⟩p = ||x− y||2p .

It is now trivial to see that y∗ is the orthogonal projection of x onto B where the
notion of orthogonality is given wrt ⟨·, ·⟩p. Thus y∗ = EB,px.
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Optimal least square estimator - Usual proof
Alternatively,

E[(X − Y )2] = E[(X − E[X|G] + E[X|G]− Y )2]

= E[(X − E[X|G])2] + E[(E[X|G]− Y )2] + 2E[(X − E[X|G]) (E[X|G]− Y )︸ ︷︷ ︸
G-meas.

]

= E[(X − E[X|G])2] + E[(E[X|G]− Y )2]

where we used the fact that for any G-measurable rv Z we have

E[(X − E[X|G])Z] = E[XZ]− E[E[XZ|G]] = E[XZ]− E[XZ] = 0.

Since E[(E[X|G]− Y )2] ≥ 0, then for any G-measurable rv Y :

E[(X − Y )2] ≥ E[(X − E[X|G])2].
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Quantum CEs
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Brief review of ∗-algebras

We define a ∗-algebra A as an operator space closed under matrix multiplication and
adjoint action.

X,Y ∈ A ⇒ X + Y ∈ A X†, Y † ∈ A and XY ∈ A

Remember: It is the fundamental mathematical structure that supports a quantum
probability space.
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Examples

A1 = span{σj , j = 0, x, y, z} = C2×2, dim(A1) = 4

A2 = span{σj ⊗ σk, j, k = 0, x, y, z} = C4×4, dim(A2) = 16

A3 = span{σj ⊗ σk, j = 0, x, y, z, k = 0, z} ⊊ C4×4, dim(A3) = 8

A4 = span{σj ⊗ σj , j = 0, x, y, z} ⊊ C4×4, dim(A4) = 4

A5 = span{|j⟩⟨j| , j = 0, 1, 2, 3} ⊊ C4×4, dim(A5) = 4

Question: A4 and A5 have the same dimension. Are they the same algebra?
If not how do we distinguish them?
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Wedderburn decomposition
For any algebra A , there exist an Hibert space decomposition

H =
⊕
k

HS,k ⊗HF,k ⊕HR

and a unitary operator U such that

A = U

(⊕
k

B(HS,k)⊗ 1F,k ⊕ 0R

)
U †.

Note: some values are repeated multiple times
hence we can find a smaller isomorphic
representation A ≃⊕k B(HS,k) ≡ Ǎ .
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Examples

A1 = span{σj , j = 0, x, y, z} = C2×2

A2 = span{σj ⊗ σk, j, k = 0, x, y, z} = C4×4

A3 = span{σj ⊗ σk, j = 0, x, y, z, k = 0, z} ≃ C2×2
⊕

C2×2

A4 = span{σj ⊗ σj , j = 0, x, y, z} ≃ C2×2

A5 = span{|j⟩⟨j| , j = 0, 1, 2, 3} ≃ C ⊕ C ⊕ C ⊕ C
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Quantum CE - Definition

Definition 6
A conditional expectation EB,ρ[·] is a positive projector onto a unital algebra B

EB,ρ : A → B.

A conditional expectation preserves a state ρ ∈ D(H) when, for all X ∈ B(H)

Eρ[EB,ρ[X]] = tr[ρEB,ρ[X]] = tr[ρX] = Eρ[X].
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Properties

Proposition 1
Let E : A → B be a linear, and unital map, i.e. E(1) = 1. Then E is contractive in the
operator norm if an only if E is positive, that is:

||E [A]||op ≤ ||A||op ∀A ∈ A ⇔ E(A†A) ≥ 0,∀A ∈ A .

This proposition is quite useful because there exists a very powerful theorem that
talks about projectors between ∗-algebras that are contractive in the operator norm.
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Properties - Tomiyama

Theorem 7 (Tomiyama 1957)
Let ΠB : A → B be a projection from A onto B, contractive in the operator norm, i.e.
||ΠB(X)||op ≤ ||X||op.
Then ΠB enjoys the following properties:

1. ΠB is positive and unital, i.e. ΠB(A†A) ≥ 0 for all A ∈ A , and Π(1) = 1;
2. ΠB is B-linear, i.e. for all A ∈ A and B1, B2 ∈ B, ΠB(B1AB2) = B1ΠB(A)B2;

3. ΠB satisfies the Kadison-Schwartz inequality ΠB(A)†ΠB(A) ≤ ΠB(A†A) for all
A ∈ A .

Corollary 8
Let ΠB : A → B be a positive projector between ∗-algebras, then ΠB[·] is completely
positive.

Note: CEs are automatically CP and unital.
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Properties - Orthogonality
Let consider a full rank density operator ρ and let us define the inner product

⟨X,Y ⟩ρ ≡ tr[ρX†Y ]

Proposition 2
Consider a CE EB,ρ that preserves the state ρ. Then EB,ρ is orthogonal wrt the inner
product ⟨·, ·⟩ρ, i.e.

〈
X,EB,ρ(Y )

〉
ρ
=
〈
EB,ρ(X), Y

〉
ρ
.

Proof.
Using state preservation, B-linearity and positivity we get〈

X,EB,ρ(Y )
〉
ρ
= tr[ρX†EB,ρ(Y )] = tr[ρEB,ρ(X

†EB,ρ(Y ))] = tr[ρEB,ρ(X)†EB,ρ(Y )],〈
EB,ρ(X), Y

〉
ρ
= tr[ρEB,ρ(X)†Y ] = tr[ρEB,ρ(EB,ρ(X)†Y )] = tr[ρEB,ρ(X)†EB,ρ(Y )].
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Properties - Existence

Theorem 9 (Tomita-Takesaki theorem)
Suppose ρ ∈ D(H) is an invertible density matrix. The following conditions are equiv-
alent:

1. A conditional expectation EB,ρ[·] : A → B, that preserves ρ exists;
2. B is Mρ,λ(·) ≡ ρλ · ρ−λ invariant ∀λ ∈ C, i.e. for every B ∈ B it holds

ρλBρ−λ ∈ B.

The proof that follows is inspired by Petz’s “Quantum Information Theory and
Quantum Statistics”.

Here we prove it in the finite-dimensional case but it holds also for
infinite-dimensional algebras.
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Tomita-Takesaki Proof of (1.) ⇒ (2.)

This comes directly from the block structure of fixed points of CP and unital maps
whose dual admits a full-rank equilibria (seen in the previous lecture).

fix(E|B,ρ) = B =
⊕
k

B(HS,k)⊗ 1F,k implies ρ =
⊕
k

τk ⊗ σk ∈ fix(E|†B,ρ)
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Tomita-Takesaki Proof of (1.) ⇒ (2.)
Alternative proof from Petz:
• Let us denote by S the conjugate linear operator, i.e. S(X) = X†, ∀X ∈ B(H).
• Let us also denote by ∗ the adjoint operator wrt ⟨·, ·⟩ρ, e.g. E∗

B,ρ = EB,ρ.

• Then S∗(X) = ρX†ρ−1 since:

⟨S(X), Y ⟩ρ = tr[ρXY ] = tr[Y †ρ−1ρX†ρ] = tr[ρX†ρY †ρ−1] = ⟨X, ρY †ρ−1⟩ρ = ⟨S∗(Y ), X⟩ρ .

• Since EB,ρ is positive, EB,ρS = SEB,ρ.
• Furthermore, since E∗

B,ρ = EB,ρ, then EB,ρS∗ = S∗EB,ρ.

• If we then define ∆ ≡ S∗S, ∆(X) = ρXρ−1, we have ∆EB,ρ = EB,ρ∆
as well as ∆itEB,ρ = EB,ρ∆

it with ∆it(X) = ρitXρ−it.
• To conclude we have

∆itB = ∆itEB,ρA = EB,ρ∆
itA = EB,ρA = B.
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Tomita-Takesaki Proof of (2.) ⇒ (1.)

Step 1: Prove that EB,1/n, a positive projector onto B preserving 1/n, exists.

• E : A → B be the orthogonal (wrt ⟨·, ·⟩HS) projector onto B, i.e. E2 = E = E†.
• It exists as it is just a projector onto an operator subspace.
• Since B is unital, then E(1) = 1, hence E preserves 1/n in the sense

tr[1/nE(X)] = tr[1/nX].

• It then remains to prove that E is also positive (in the sense that maps positive
semidefinite operators into positive semidefinite operators). Recall that X is positive
semidefinite iff tr[Y †X] ≥ 0 for all Y ≥ 0. Consider the X ≥ 0.

⟨B, E(X)⟩HS = ⟨E(B), X⟩HS = tr[B†X] ≥ 0

for all positive semidefinite B ∈ B. Hence E(X) ∈ B is positive semidefinite.
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Tomita-Takesaki Proof of (2.) ⇒ (1.) continues
Step 2: Assumption 2. holds if and only if ρ is compatible with B that is

ρ =
⊕
k

τk ⊗ σk where B =
⊕
k

B(HS,k)⊗ 1F,k.

⇐ is trivial. ⇒ is quite technical, we just give an intuition.
• Note that Mρ,iφ is a unitary super-operator group as ρiφ is unitary:

ρiφρiφ
†
= ρiφρ−iφ = 1. Let ρiφ = eiHφ and L(·) = −i[H, ·]

• The fact that B is Mρ,iφ invariant implies that:
◦ Taking the derivative, the off-diagonal blocks must be zero, i.e. L(B) ⊆⊕k B(Hk).
◦ In the diagonal-blocks, there can not be entanglement thus

L(B) =
⊕
k

LS,k(Bk)⊗1F,k+1S,k⊗LF,k(1F,k) ⇔ H =
⊕
k

HS,k⊗1F,k+1S,k⊗HF,k.

◦ LF,k(1F,k) = 0, already satisfied.
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Tomita-Takesaki Proof of (2.) ⇒ (1.) continues

Step 3: Define ρ0 ≡ E(ρ) ∈ B. Under assumption 2. we want to prove that, for all
B ∈ B:

ρ
1
2Bρ−

1
2 = ρ

1
2
0Bρ

− 1
2

0 .

As B ∈ B, it admits a decomposition as B =
⊕

k Bk ⊗ 1F,k.
From step 2:

ρ =
⊕
k

τk ⊗ σk then ρ0 =
⊕

τk ⊗ 1F,k

thus:

ρ
1
2Bρ−

1
2 =

⊕
k

τ
1
2
k Bkτ

− 1
2

k ⊗ σ
1
2
k σ

− 1
2

k =
⊕
k

τ
1
2
k Bkτ

− 1
2

k ⊗ 1F,k = ρ
1
2
0Bρ

− 1
2

0
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Tomita-Takesaki Proof of (2.) ⇒ (1.) continues

Step 4: Define Fρ(X) ≡ ρ
− 1

2
0 E(ρ 1

2Xρ
1
2 )ρ

− 1
2

0 and observe:
• Fρ is CP and preserves ρ:

tr[ρFρ(X)] = tr[ρρ
− 1

2
0 E(ρ 1

2Xρ
1
2 )ρ

− 1
2

0 ] = tr[E(ρ−
1
2

0 ρρ
− 1

2
0 )ρ

1
2Xρ

1
2 ]

= tr[ρ
− 1

2
0 E(ρ)ρ−

1
2

0 ρ
1
2Xρ

1
2 ] = tr[ρ

− 1
2

0 ρ0ρ
− 1

2
0 ρ

1
2Xρ

1
2 ] = tr[ρX];

• Under assumption 2. we have, for all B ∈ B, that:

Fρ(B) = ρ
− 1

2
0 E(ρ 1

2Bρ
1
2 )ρ

− 1
2

0 = ρ
− 1

2
0 E(ρ 1

2Bρ−
1
2︸ ︷︷ ︸

∈A

ρ)ρ
− 1

2
0 = ρ

− 1
2

0 ρ
1
2Bρ−

1
2E(ρ)ρ−

1
2

0

= ρ
− 1

2
0 ρ

1
2
0Bρ

− 1
2

0 E(ρ)ρ−
1
2

0 = Bρ
− 1

2
0 ρ0ρ

− 1
2

0 = B

hence Fρ acts as the identity on B and, since ImFρ = B, then F2
ρ = Fρ.
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Understanding the theorem

Attention! Given B, there always exists a positive projector (CE) onto B that
preserves a state, but, given B AND ρ, there might not exist a positive projector onto
B that preserve that particular state ρ.

Take A = B(H1 ⊗H2) and B = B(H1)⊗ 12.

If ρ = ρ1 ⊗ ρ2 then EB,ρ[X] = trH2 [X(11 ⊗ ρ2)].
If ρ ̸= ρ1 ⊗ ρ2 then ∄EB,ρ, positive and such that ρ is preserved.

This is a major departure from the classical case - for every commuting subalgebra
and distribution a conditional expectation fixing the latter exists!
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CE and their block representation

Theorem 10
Let EB,ρ[·] be a conditional expectation onto B, a unital ∗-subalgebra of A . Then,
there exists a set of density operators {τk ∈ D(HF,k)} such that, for all X ∈ B(H)

EB,ρ[X] = U

(
K−1⊕
k=0

trF,k

[
(WkXW †

k )(1dk ⊗ τk)
]
⊗ 1F,k

)
U †

where Wk are partial isometries W †
k : Hk → H, s.t. WkW

†
k = 1Hk

and W †
kWk = ΠHk

.

Lemma 11
Let EB,ρ be a conditional expectation that preserves ρ > 0. Then EB,ρ is orthogonal
wrt the inner product ⟨X,Y ⟩ρ,λ ≡ tr[X†ρλY ρ1−λ], for all λ ∈ [0, 1].
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State extensions - Definition

Definition 12
The adjoint operator of the conditional expectation EB,ρ with respect to the Hilbert-
Schmidt inner product takes the name of state extension, denoted as JB,ρ[·] = E†

B,ρ[·],
i.e.

〈
X,EB,ρ[Y ]

〉
HS

=
〈
JB,ρ[X], Y

〉
HS

for all X,Y ∈ B(H).

A conditional expectation EB,ρ[·], preserves ρ if and only if ρ is a fixed point of its state
extension, i.e.

Eρ[EB,ρ[·]] = Eρ[·] ⇔ JB,ρ[ρ] = ρ.

Since EB,ρ is CP and unital JB,ρ is CPTP.
JB,ρ is orthogonal wrt tr[X†ρ−λY ρλ−1] for all λ ∈ [0, 1].

EB,ρ produces a coarse-graining of observables (Heisenberg picture) while
JB,ρ produces a coarse-graining of states (Schroedinger picture).
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Factorization of state extensions
JB,ρ[·] can be factorized in two non-square CPTP factors

JB,ρ[·] = JR

such that R : A → B̌ and J : B̌ → B and RJ = IB̌ (and also, EB,ρ = R†J †).

R(X) =

K⊕
k=1

trHF,k
(V ∗

k XVk) =

K⊕
k=1

XS,k = X̌,

J (X̌) = U

(
K⊕
k=1

XS,k ⊗ σk

)
U∗.

J is a ∗-homomorphisms, i.e. is an isomorphisms
s.t. J (X̌Y̌ ) = J (X̌)J (Y̌ ) and J (X̌†) = J (X̌)†.

≃
A

B

C

A

A

B

B

B

C

R

J

47/73



Reduction of CP dynamics

Given a CPTP map A, its restriction onto the algebra B,

A|B = RAJ

is CPTP.

Given a Lindblad-GKS generator L, its restriction onto the algebra B

L|B = RLJ

is still a Lindblad-GKS generator.
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Convergence to common fixed
points by alternating projections
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Alternating projections

Consider two ∗-subalgebras B1,B2 ⊆ A . Assume there exists a density operator
ρ > 0 such that ∃EB1,ρ,EB2,ρ, that is, ρ is compatible with both B1 and B2.
Then, EB1,ρ,EB2,ρ are orthogonal wrt the same inner product ⟨·, ·⟩ρ.

Theorem 13 (von Neumann-Halperin alternating projections)
Let H1, . . . ,Hr be closed subspaces in a Hilbert space H ad let PHj be the (co-
)orthogonal projections. Then

lim
n→∞

(PH1 . . . PHr)
n = P

where P is the orthogonal projection onto
⋂r

j=1Hj .

This implies that
lim
n→∞

(EB1,ρEB2,ρ)
n = EB1∩B2,ρ

where B1 ∩ B2 is a ∗-subalgebra of A .
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Common fixed points
Consider now two CPTP maps E1, E2. Assume ∃ρ > 0 such that ρ ∈ Fix(E1)∩ Fix(E2).
Then, Bj = Fix(E†

j ) and their Césaro means are

JBj ,ρ = lim
N→+∞

1

N

N∑
k=1

Ek
j

thus
lim
n→∞

(JB1,ρJB2,ρ)
n = JB1∩B2,ρ

where JB1∩B2,ρ is the CPTP projector onto Fix(E1) ∩ Fix(E2).

If Fix(E1) ∩ Fix(E2) = {ρ} then, for all ρ0 ∈ D(H):

lim
n→∞

(JB1,ρJB2,ρ)
nρ0 = ρ.
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Bayesian parameter estimation

• Classical case;
• Quantum Measurement;
• Hybrid classical-quantum.
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Classical Example - Dungeon & Dragons

Assume you are playing D&D and your master, hidden from you, tosses two dice.
The first (fair) die has 6 faces and, depending on its outcome, he tosses a second
(fair) die with a number of faces equal to the outcome of the first toss and tells you the
outcome of the second toss.
We would like to estimate the value of the first die.

We model this problem by considering two discrete random variables:
• The first, X is hidden from us but we know that is uniformly distributed in [1, N ]

(with N = 6), i.e. X ∼ U([1, N ]);
• The second instead, Y is uniformly distributed in [1, X], i.e. Y ∼ U([1, X]), and

we know its outcome y;
• We would like to compute E[Z|Y ] for some random variable Z = g(X) (X,Z are

measurable wrt the same σ-algebra).
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Probability distribution

We know that X ∼ U([1, N ]) thus pX(x) = 1
N while Y ∼ U([1, X]) hence

pY |X(y|x) =
{
1/x if y ≤ x

0 otherwise

which implies

pX,Y (x, y) = pY |X(y|x)pX(x) =

{
1

Nx if y ≤ x

0 otherwise
.
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Algebraic modelling
Consider an Hilbert spaces H = CN . Let {|j⟩} form an orthonormal base for H.
We then construct two sub-algebras B1 = alg{|j⟩⟨j| ⊗ 1H} and B2 = alg{1H ⊗ |j⟩⟨j|}
which are subalgebras of A = {|j⟩⟨j| ⊗ |k⟩⟨k|} ⊂ B(H⊗H).

The state of the system then is:

ρ =

N∑
x,y=1

pX,Y (x, y) |y⟩⟨y| ⊗ |x⟩⟨x|

and the observables X,Y and Z are

Y =

 N∑
y=1

y |y⟩⟨y|

⊗ 1N ∈ B1, X = 1N ⊗
(

N∑
x=1

x |x⟩⟨x|
)

∈ B2 and

Z = 1N ⊗
(

N∑
x=1

g(x) |x⟩⟨x|
)

∈ B2,
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Conditional expectation construction

Conditioning on observations of Y is equivalent to take a CE onto B1.
Trivially, ∃EB1,ρ, as this is just a complex way of representing classical probability
theory. In fact, ρ is compatible with B1 since they are both diagonal.

Note that B1 =
⊕N

y=1 C ⊗ 1N and

ρ =

N⊕
y=1

pY (y)⊗ τy where τy =

N∑
x=1

pX|Y (x|y) |x⟩⟨x| ∈ CN×N

hence:

EB1,ρ[Z] =

N⊕
y=1

tr
[
(WyZW †

y )(1⊗ τy)
]
⊗ 1N

where Wy = ⟨y| ⊗ 1N .
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Double-check

EB1,ρ[Z] =

N⊕
y=1

tr

[
⟨y|y⟩ ⊗

(
N∑

x=1

g(x) |x⟩⟨x|
)(

N∑
x′=1

pX|Y (x
′|y)

∣∣x′〉〈x′∣∣)]⊗ 1N

=

N⊕
y=1

N∑
x=1

g(x)pX|Y (x|y)︸ ︷︷ ︸
E[g(X)|Y=y]

⊗1N =

N⊕
y=1

E[Z|Y = y]⊗ 1N

y 1 2 3 4 5 6

P[Y = y] .41 .24 .16 .1 .06 .03

E[X|Y = y] 2.44 3.44 4.21 4.86 5.45 6
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Note:

If the CE exists.

Let us call Ẑ(Y ) = EB1,ρ[Z]. Then:
• Ẑ(Y ) is an unbiased estimator of Z, i.e. Eρ[Z] = Eρ[Ẑ(Y )];
• Is optimal in the least-square sense (minimal error variance), i.e.

Ẑ = argmin
f(Y )

Eρ[(Z − f(Y ))†(Z − f(Y ))]

(easily proven by the orthogonality of EB1,ρ wrt ⟨X,Y ⟩ρ = Eρ[XY ])
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Quantum measurement

Let consider a finite-dimensional quantum system H ≃ Cn and let A = B(H).
Let assume that the system is in a state ρ ∈ D(H) and that we perform the
measurement of an observable O ∈ H(H).
For simplicity let us assume that O =

∑n
j=1 oj |j⟩⟨j| (no degeneracy and we work in

the basis that diagonalizes O).

After the measurement we assume to have another observable, say X ∈ H(H) and
we would like to compute the optimal least-square estimator of the state of the
quantum system after the measurement. That is, we want to find

argmin
f(O)

E?[(X − f(O))†(X − f(O))].
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Quantum measurement

After the measurement of O, the state of the quantum system is

ρ′ =

n∑
j=1

|j⟩⟨j| ρ |j⟩⟨j|∑n
k=1 ⟨k| ρ |k⟩

=

n⊕
j=1

pj where pj =
⟨j| ρ |j⟩∑n

k=1 ⟨k| ρ |k⟩
.

Note that ρ is compatible with B = alg({|j⟩⟨j|}nj=1) hence ∃ EB,ρ′ .
Again:
• EB,ρ′ [X] is an unbiased estimator of X, i.e. Eρ′ [X] = Eρ′ [EB,ρ[X]];
• is optimal in least-square sense:

EB,ρ′ [X] = argmin
f(O)

Eρ′ [(X − f(O))†(X − f(O))].

Note that here X does not need to commute with O.
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Quantum parameter estimation

Assume you have a hidden discrete random variable X that influences the state of a
quantum system on which you can perform measurements. We would like to estimate
the hidden random variable based on measurements of the quantum system.
(Inspired by recent works by Mankei Tsang).

Consider two Hilbert spaces HQ and HC . Our probability space is (A , ρ) where

A = B(HQ)⊗ alg({|j⟩⟨j|}nC
j=1) ⊂ B(HQ ⊗HC)

and, given a prior in the hidden variable p0 ∈ RnC and the initial state of our quantum
system τ0 ∈ D(HQ) we have

ρ0 = τ0 ⊗ diag(p0).
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Parameter influence
The random variable X then takes value xj with probability pj . We can thus model it
as

X = 1Q ⊗

 nC∑
j=1

xj |j⟩⟨j|

 .

We here assume that the parameter influences the state of the system trough a
parametric unitary rotation, i.e.

τ|x = eiHxτ0e
−iHx.

After this influence, the state of the joint (quantum-classical) system is

ρ1 =

nC∑
j=1

τ|xj
⊗ pj |j⟩⟨j| .
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Measurement

We then assume to perform a measurement on the quantum system of a
non-degenerate observable O ∈ H(HQ), O =

∑nQ

k=1 oj |k⟩⟨k|.
The state of the system after the measurement is then

ρ2 =

nQ∑
k=1

(|k⟩⟨k| ⊗ 1C)ρ1(|k⟩⟨k| ⊗ 1C)

∗ =

nQ∑
k=1

nC∑
j=1

⟨k| τ|xj
|k⟩ pj∑

l,m ⟨l| τ|xm
|l⟩ pm

|k⟩⟨k| ⊗ |j⟩⟨j| .

Now, ρ2 is diagonal, hence is compatible with B = alg({|k⟩⟨k| ⊗ 1C}).

∃ EB,ρ2 , and it’s the same one we saw in the beginning (classical example).

E|B,ρ2 [X] =

nQ⊕
k=1

tr[WkXW †
k (1 ⊗ τk)]⊗ 1C
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Quantum Model Reduction

Based on [arXiv:2412.05102].
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The model

ρ̇(t) = L [ ρ(t) ]

Y (t) = C [ρ(t)]
, ρ0 ∈ D(H)

B(H) = Cn×n

ρ are density operators:
ρ ∈ Cn×n, ρ = ρ† ≥ 0, tr[ρ] = 1

L is a Lindblad generator

C is a linear output mapY (t) ∈ Cm×m is the output of
interest, the one we want to
preserve

ρ0 is the initial condition
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The problem: quantum model reduction

Given a Quantum System (L, C) defined by a generator L and an output map C we
want to find another QS (Ľ, Č) and a linear map Φ : Cn×n → Cr×r such that for all
t ≥ 0 and all ρ0 ∈ D(H), ρ̌0 = Φ[ρ0]

• exact model reduction
C[eLt[ρ0]] = Č[eĽt[ρ̌0]];

• approximate model reduction (future work)

C[eLt[ρ0]] ≈ Č[eĽt[ρ̌0]].
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Symmetries

Let U be a unitary operator, UU † = 1, and define U(ρ) = UρU †.
Let {Tt}t≥0 = {eLt}t≥0 be the quantum dynamical semigroup generated by L.

Definition 14
U is a symmetry for L if

[Tt,U ] = 0, ∀t ≥ 0.

By continuity of the semigroup we have that U is a symmetry if an only if [L,U ] = 0.

Definition 15
• Strong symmetry if [H,U ] = [Lk, U ] = 0;
• Weak symmetry if [L,U ] = 0.

Note that: (1) Strong implies weak; (2) Symmetries form a group; (3) A symmetry for
L is also a symmetry for L†.
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Symmetries and invariant subspaces

Proposition 3
If U is a symmetry for L, operator eigenspaces of U are L-invariant.

Proof.
Take X ∈ B(H) such that U(X) = νX and denote by Y = L(X). Then

U(Y ) = UL(X) = LU(X) = νL(X) = νY

hence any ν-eigenoperator of U is mapped trough L to a ν-eigenoperator of U , thus
the ν-eigenspace is L-invariant.

Because U is normal, we can decompose the space of operators into L-invariant
subspaces as

B(H) =
⊕
j

eigspνj (U).
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Invariant algebras

Consider now a unitary subgroup G of weak symmetries for L,
i.e. ∀U ∈ G we have L(U · U †) = UL(·)U †.

The commutant of G , G ′ = {X ∈ B(H)|[X,U ] = 0, ∀U ∈ G }:
• is a unital ∗-algebra;
• is the intersection of the 1-eigenspaces of symmetries in G ,

G ′ =
⋂
U∈G

eigsp1(U);

• is L- and L†-invariant.

But then ∃E|G ′,1/n which is a CP unital and orthogonal projector (and thus CPTP)
onto an invariant subspace!
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What does this mean?

Consider ρ0 ∈ G ′. Because G ′ is L-invariant we have that ρ(t) = eLtρ0 ∈ G ′, ∀t ≥ 0.
Then,

ρ(t) = E|G ,1/n[ρ(t)] = E|G ,1/ne
E|G ,1/nLE|G ,1/ntρ0.

Using E|G ,1/n = JR, RJ = IǍ the two CPTP factors defined last time, then we have{
ρ̇(t) = L[ρ(t)]
Y (t) = C[ρ(t)]

ρ(0) = ρ0 ≡
{

˙̌ρ(t) = RLJ [ρ̌(t)]

Y (t) = CJ [ρ̌(t)]
ρ̌(0) = R(ρ0)

in the sense that
CeLt(ρ0) = CJ eRLJ tR(ρ0) ∀t ≥ 0.

Furthermore, RLJ is a Lindblad generator!
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Observable symmetry-based reduction

Assume now that C(ρ) = tr[Oρ] and O ∈ G ′. Because G ′ is ALSO L†-invariant we
have that O(t) = eL

†tO ∈ G ′, ∀t ≥ 0.
Then,

tr[Oρ(t)] = tr[OeLt(ρ0)] = tr[eL
†t(O)ρ0] = tr[E|G ,1/n[O(t)]ρ0].

Using again E|G ,1/n = JR, RJ = IǍ the two CPTP factors defined last time, then we
have{

ρ̇(t) = L[ρ(t)]
Y (t) = C[ρ(t)]

ρ(0) = ρ0 ≡
{

˙̌ρ(t) = RLJ [ρ̌(t)]

Y (t) = CJ [ρ̌(t)]
ρ̌(0) = R(ρ0)

in the sense that
CeLt(ρ0) = CJ eRLJ tR(ρ0) ∀t ≥ 0.
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Operator-dependent symmetries

What if we are interested in operators that are not in G ′?

Definition 16
A unitary U is an operator-dependent symmetry (ODS) for an observable O if U(ρ) =
UρU † satisfies:

[T †
t ,U ](O) = 0, ∀t ≥ 0

U(O) = O

Equivalent condition UL†k(O) = L†kU(O) for all k ∈ N.
Note that all symmetries are ODS for the observables in the commutant of their group.
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Operator-dependent symmetries

If we now define G as a group of ALL ODS for the observable O and generator L, we
can prove that G ′ is the minimal ∗-algebra containing eL

†t[O] for all t ≥ 0:

G ′ = alg{L†k[O], ∀k ∈ N}.

This gives us a numerical method to compute G ′.
Using the same procedure as before we can perform model reduction.

Note: G ′ is not necessarily L†-invariant but contains the smallest L†-invariant
subspace that contains O, and this is the important fact.
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Example - Central Spin System

H = HS ⊗ 1B +
1

2

(
Axσ

(1)
x Jx +Ayσ

(1)
y Jy +Azσ

(1)
z Jz

)
Lloc
k = δσ

(k)
+ , ∀k ∈ bath

where Y (t) = tr[ρ(t)].

Weak symmetries are composed by bath permutations.

If we introduce a bath term
HB =

∑
2≤j<k Bj,k

(
σ
(j)
x σ

(k)
x + σ

(j)
y σ

(k)
y + σ

(j)
z σ

(k)
z

)
to H, the symmetries become ODS.

S
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Reduction

The dimension of O = G ′

scales with N3 while
the dimension of B(H) is 4N .

The dimension of the largest
block grows with N2.
We can efficiently parallelize
the simulation if the symmetry
is strong (case with collective
dissipation).

2 3 4 5 6 7

42

43

44

45

46

47

N

dim(B(H))

dim(CG ′
N )

maxj dim(B(HF,j))

dim(N ⊥) - XYZ

dim(N ⊥) - Heis
dim(O)
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