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lllustrative application: Z !
Dissipative central spin model )
H=Hs®Hp Hs~C2 Hp~C¥?
Hsp = Hs © 15 + Hp + %(Axagl)Jx + 4,00y + AoV,
With Hp = 35, oot
Collective (Markovian) dissipation LG = AJ,..
ps(t) = trp[p(t)].

Relevant for NV centers.



Goal: Efficient quantum simulation /

<

X !
simulate the evolution of pg(t) for large numbers of spins.
Avoid simulating redundant degrees of freedom (while retaining a Markovian model).

We would like to find a smaller dynamical model that is a valid quantum model (a
generator in Lindblad form) for a few reasons:

® simulation on quantum computers;
® retain interpretability;
® probe the model’s “quantumness”.



General setting: B(H) = cren

p are density operators:

p€CY™ ™ p=pt>0,tr[p] = 1.
L is a GKLS generator.

po is the initial condition.

{p(t) LIpt)] e

y(t) = Clo)]

y(t) € C™™ is the out-
put of interest, the one
we want to reproduce, e.g.

(X (), ps(t).

C is a linear output map,
e.g. tr[Xp(t)] or trg[p(t)].

£(p) = ~ilH. g + " Lokl — S{LLLw b C() = D Bitr(X]).
k %



The problem: quantum model reduction

Given a model (£,C), we want to find another, smaller model (Z,C),
and a linear initialization map ® : C*»*"™ — C"*" such that
forallt > 0andall pg € D(H), po = ®(po):

e (po) = Ce(po);



Proposed model reduction algorithm (1/4)

Compute the N+, from {X;} as

Nt = span{ﬁ“(Xi), Vi,Vj=0,...,n% —1}.

Fact: to reproduce the output
(e.g. ps(t)). Projecting the dynamics on .+ we find a (provably) minimal linear solution:

{i:(t):f:x(t) el ps(t) = Cellag

Problem: Not a quantum model. How do we obtain one?



Proposed model reduction algorithm (2/4)
Compute the O = alg(Nt).

It is the fundamental structure that supports a quantum probability space.
Related to DFS and the structure of fixed points of CP maps.

Find U that brings & to their canonical Wedderburn decomposition H = @, Hr i @ Ha k

0 = (<@ B(Hpp) @ 1(,%,) Ut
k
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(} = @ ‘B(HZW,A!)'
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Proposed model reduction algorithm (3/4)

Compute the E|L, = Els
K-1
Elo(X)=U( @ true, (WiXW]| @ ok Vi yxe B(H).
o Ha ke k dlm%g . s
k=0

E|s[] can be factorized into CPTP maps

Elg[] = IR

B
B
B
C
K




Proposed model reduction algorithm (4/4)

Define the reduced generator £ = 7£R on ¢ and the output function ¢ = C.7.
Then, for any initial condition py € ©(H), we have

CeF(pg) = Cve[:tR(,oo), vVt > 0.

0 is also the minimal algebra that supports such a reduction.

Theorem: Let 7 be a unital x-subalgebra of B(#), and let E,, = JR CPTP, as defined
above. Then for any Lindblad generator £, its reduction to <7,

L=RLT,

is also a Lindblad generator, that is, £ : &/ — </ and {e£'},>¢ is a QDS.



An interpretation with symmetries

UecB(H),UU=1,U(-)=U-U'is asymmetry when
Ly =uett, v > .

If a generator £ enjoys a group of symmetries ¢ and {X;} C ¢’ then & C ¢’. Hence
the presence of symmetries may imply model reduction onto ¢’ (which is an algebra).

Def: We define an observable-dependent symmetry (ODS) U for an observable X if

U(p) = UpU* satisfies
ULTHX) = £TH(X) vt > 0.

Thm: Let ¢ be the group of ALL ODS for (£,C). Then ¢’ = ¢, the output algebra.



Dissipative central spin model: - !
Symmetries <

With Hp = % Z%Kk a;i)a;“, bath permutations are (strong) symmetries for this
model AND all observables of interest Og ® 1p

U,0s ®1p] =0, =0s®1p c9.

We are able to find a reduced quantum model to reproduce this dynamics.

If we change the bath Hamiltonian to Hp = Y,_;_;, By %) - %) then



How much are we reducing?

47 I
. . —— dim(B(H)
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Large number of spins
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Dual procedure: Reachable reduction

Considering a single initial condition, e.g. po = [1)(1| ® [0...0)(0...0| we can further
reduce the model with a dual procedure (reachable reduction) of what we just

described.
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Take home ideas

1. Algebras and CPTP projectors provide
CPTP-preserving model reduction.

2. The Krylov based-algorithm are equivalent to finding ODS

3. Observable-dependent symmetries allow us to go
beyond simple symmetry-based model reduction.



Conclusion

General framework for model reduction of quantum dynamics, ensuring CPTP.

It has been applied to:

(classical) Hidden Markov models [arXiv:2208.05968 — IEEE Trans. Aut. Contr.]
(deterministic) Disc.-time case [arXiv:2307.06319 — IEEE Trans. Inf. Theo.]
(deterministic) Cont.-time case [arXiv:2412.05102 — Quantum]

(stochastic) Disc.-time quantum traj. [arXiv:2403.12575 — IEEE Contr. Sys. Lett.]
(stochastic) Cont.-time quantum traj. [arXiv:2501.13885 — Annales Henri Poincaré]
(deterministic) Controlled quantum dynamics [arXiv:2510.25546]

Outlook
® Approximate model reduction (in preparation);
e Connection with adiabatic elimination techniques (in preparation).
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Reduced dynamics operators (Np = 4)

UtHU UTL$"U UTU(z)U UT0(3)U UTO'(4)U UTO'(E))U

eff eff eff
Lt L, L, L,

UeBH),UU=1isa:
o strong symmetry for Lif [H,U] = [Ly, U] = 0 = each block is invariant;

e weak symmetry for £ if [£,U - U] = 0 = there is comunication between blocks.
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