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Illustrative application:
Dissipative central spin model

H = HS ⊗HB HS ≃ C2, HB ≃ C2NB
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x .

Collective (Markovian) dissipation Lc
B = ΛJ+.

We are only interested in reproducing ρS(t) = trB[ρ(t)].

Relevant for NV centers.

S



Goal: Efficient quantum simulation

Task: simulate the evolution of ρS(t) for large numbers of spins.

Avoid simulating redundant degrees of freedom (while retaining a Markovian model).

We would like to find a smaller dynamical model that is a valid quantum model (a
generator in Lindblad form) for a few reasons:

• simulation on quantum computers;
• retain interpretability;
• probe the model’s “quantumness”.
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General setting:




ρ̇(t) = L [ ρ(t) ]

y(t) = C [ρ(t)]
, ρ0 ∈ D(H)

B(H) = Cn×n

ρ are density operators:
ρ ∈ Cn×n, ρ = ρ† ≥ 0, tr[ρ] = 1.

L is a GKLS generator.

C is a linear output map,
e.g. tr[Xρ(t)] or trB[ρ(t)].

y(t) ∈ Cm×m is the out-
put of interest, the one
we want to reproduce, e.g.
⟨X(t)⟩, ρS(t).

ρ0 is the initial condition.

L(ρ) = −i[H, ρ] +
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LkρL
†
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{L†

kLk, ρ}, C(·) =
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i

Eitr(X
†
i ·).



The problem: quantum model reduction

Given a model (L, C), we want to find another, smaller model (Ľ, Č),
and a linear initialization map Φ : Cn×n → Cr×r such that
for all t ≥ 0 and all ρ0 ∈ D(H), ρ̌0 = Φ(ρ0):

• exact model reduction
CeLt(ρ0) = ČeĽt(ρ̌0);

• approximate model reduction (in progress)

CeLt(ρ0) ≈ ČeĽt(ρ̌0).



Proposed model reduction algorithm (1/4)

Step 1: Compute the Krylov “observable” operator space N ⊥, from {Xi} as

N ⊥ = span{L†j(Xi), ∀i, ∀j = 0, . . . , n2 − 1}.

We assume N ⊥ has full support: if not reduce the model to the supporting subspace.

Fact: N ⊥ contains all the necessary degrees of freedom to reproduce the output
(e.g. ρS(t)). Projecting the dynamics on N ⊥ we find a (provably) minimal linear solution:

{
ẋ(t) = Lx(t)

y(t) = Cx(t)
, x ∈ Cn, ρS(t) ≡ CeLtx0

Problem: Not a quantum model. How do we obtain one?



Proposed model reduction algorithm (2/4)
Step 2: Compute the output algebra O ≡ alg(N ⊥).

It is the fundamental structure that supports a quantum probability space.
Related to DFS and the structure of fixed points of CP maps.

Find U that brings O to their canonical Wedderburn decomposition H =
⊕

k HF,k ⊗HG,k

O = U

(⊕

k

B(HF,k)⊗ 1G,k

)
U † ≃ Ǒ =

⊕

k

B(HF,k).



Proposed model reduction algorithm (3/4)
Step 3: Compute the CPTP orthogonal projection E|†O = E|O

E|O(X) = U

(K−1⊕

k=0

trHG,k

[
WkXW †

k

]
⊗ 1G,k

dimHG,k

)
U †, ∀X ∈ B(H).

E|O [·] can be factorized into CPTP maps

E|O [·] = JR.
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Proposed model reduction algorithm (4/4)

Step 4: Reduction (main result)
Define the reduced generator Ľ ≡ JLR on Ǒ and the output function Č ≡ CJ .
Then, for any initial condition ρ0 ∈ D(H), we have

CeLt(ρ0) = ČeĽtR(ρ0), ∀t ≥ 0.

O is also the minimal algebra that supports such a reduction.

Theorem: Let A be a unital ∗-subalgebra of B(H), and let EA = JR CPTP, as defined
above. Then for any Lindblad generator L, its reduction to A ,

Ľ ≡ RLJ ,

is also a Lindblad generator, that is, Ľ : Ǎ → Ǎ and {eĽt}t≥0 is a QDS.



An interpretation with symmetries

U ∈ B(H), U †U ≡ 1, U(·) = U · U † is a symmetry when

eL
†tU = UeL†t, ∀t ≥ 0.

If a generator L enjoys a group of symmetries G and {Xj} ⊆ G ′ then O ⊆ G ′. Hence
the presence of symmetries may imply model reduction onto G ′ (which is an algebra).

Def: We define an observable-dependent symmetry (ODS) U for an observable X if
U(ρ) = UρU † satisfies

UeL†t(X) = eL
†t(X) ∀t ≥ 0.

Thm: Let G be the group of ALL ODS for (L, C). Then G ′ = O, the output algebra.



Dissipative central spin model:
Symmetries

With HB = λ
4

∑
2≤i<k σ

(i)
x σ

(k)
x , bath permutations are (strong) symmetries for this

model AND all observables of interest OS ⊗ 1B

[U,OS ⊗ 1B] = 0, ⇒ OS ⊗ 1B ∈ G ′.

We are able to find a reduced quantum model to reproduce this dynamics.

If we change the bath Hamiltonian to HB =
∑

2≤i<k Bik σ⃗
(i) · σ⃗(k) then bath

permutations are no longer symmetries for the model BUT are observable
dependent symmetries.
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How much are we reducing?

The dimension of O = G ′

scales with N3 while
the dimension of B(H) is 4N .
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Large number of spins

Simulation with no dissipation and
strong intra-bath coupling (i.e. λ/ω̄ = 20).

A self-decoupling effect occurs for λ >> ω̄
which was previously observed
only up to NB = 14.
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Dual procedure: Reachable reduction
Considering a single initial condition, e.g. ρ0 = |1⟩⟨1| ⊗ |0 . . . 0⟩⟨0 . . . 0| we can further
reduce the model with a dual procedure (reachable reduction) of what we just
described.
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NB = 5, collective dissipation Lc
B = ΛJ+.



Take home ideas

1. Algebras and CPTP projectors provide
CPTP-preserving model reduction.

2. The Krylov based-algorithm are equivalent to finding ODS

3. Observable-dependent symmetries allow us to go
beyond simple symmetry-based model reduction.



Conclusion

General framework for model reduction of quantum dynamics, ensuring CPTP.
It has been applied to:
• (classical) Hidden Markov models [arXiv:2208.05968 – IEEE Trans. Aut. Contr.]
• (deterministic) Disc.-time case [arXiv:2307.06319 – IEEE Trans. Inf. Theo.]
• (deterministic) Cont.-time case [arXiv:2412.05102 – Quantum]
• (stochastic) Disc.-time quantum traj. [arXiv:2403.12575 – IEEE Contr. Sys. Lett.]
• (stochastic) Cont.-time quantum traj. [arXiv:2501.13885 – Annales Henri Poincaré]
• (deterministic) Controlled quantum dynamics [arXiv:2510.25546]

Outlook
• Approximate model reduction (in preparation);
• Connection with adiabatic elimination techniques (in preparation).
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Thanks for your attention!



Reduced dynamics operators (NB = 4)
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U ∈ B(H), U †U = 1 is a:
• strong symmetry for L if [H,U ] = [Lk, U ] = 0 ⇒ each block is invariant;
• weak symmetry for L if [L, U · U †] = 0 ⇒ there is comunication between blocks.


